We present a new method for editing smoke animations by directly deforming the grid used for simulation. We present a modification to the widely used semi-Lagrangian advection operator and use it to transfer the defor...We present a new method for editing smoke animations by directly deforming the grid used for simulation. We present a modification to the widely used semi-Lagrangian advection operator and use it to transfer the deformation from the grid to the smoke body. Our modified operator bends the smoke particle streamlines according to the deformation gradient.We demonstrate that the controlled smoke animation preserves the fine-grained vortical velocity components and incompressibility constraints, while conforming to the deformed grid. Moreover, our approach enables interactive 3D smoke animation editing by using a reduced-dimensional subspace. Overall, our method makes it possible to use current mesh editing tools to control the smoke body.展开更多
In recent years we have witnessed a large interest in surface deformation techniques. This has been a reaction that can be attributed to the ability to develop techniques which are detail-preserving. Space deformation...In recent years we have witnessed a large interest in surface deformation techniques. This has been a reaction that can be attributed to the ability to develop techniques which are detail-preserving. Space deformation techniques, on the other hand, received less attention, but nevertheless they have many advantages over surface-based techniques. This paper explores the potential of these two approaches to deformation and discusses the opportunities that the fusion of the two may lead to.展开更多
The theory and methods of digital geometry processing has been research area in computer graphics, as geometric models serves as the core data for 3D graphics applications. The purpose of this paper is to introduce so...The theory and methods of digital geometry processing has been research area in computer graphics, as geometric models serves as the core data for 3D graphics applications. The purpose of this paper is to introduce some recent advances in digital geometry processing, particularly mesh fairing, surface parameterization and mesh editing, that heavily use differential geometry quantities. Some related concepts from differential geometry, such as normal, curvature, gradient, Laplacian and their counterparts on digital geometry are also reviewed for understanding the strength and weakness of various digital geometry processing methods.展开更多
基金supported in part by Army Research Office and National Science Foundation
文摘We present a new method for editing smoke animations by directly deforming the grid used for simulation. We present a modification to the widely used semi-Lagrangian advection operator and use it to transfer the deformation from the grid to the smoke body. Our modified operator bends the smoke particle streamlines according to the deformation gradient.We demonstrate that the controlled smoke animation preserves the fine-grained vortical velocity components and incompressibility constraints, while conforming to the deformed grid. Moreover, our approach enables interactive 3D smoke animation editing by using a reduced-dimensional subspace. Overall, our method makes it possible to use current mesh editing tools to control the smoke body.
文摘In recent years we have witnessed a large interest in surface deformation techniques. This has been a reaction that can be attributed to the ability to develop techniques which are detail-preserving. Space deformation techniques, on the other hand, received less attention, but nevertheless they have many advantages over surface-based techniques. This paper explores the potential of these two approaches to deformation and discusses the opportunities that the fusion of the two may lead to.
基金The research work of this paper is supported by the National Natural Science Foundation of China under Grant No. 60021201 the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China under Grant No. 705027 and the National Grand Fundamental Research 973 Program of China under Grant No. 2002CB312101.
文摘The theory and methods of digital geometry processing has been research area in computer graphics, as geometric models serves as the core data for 3D graphics applications. The purpose of this paper is to introduce some recent advances in digital geometry processing, particularly mesh fairing, surface parameterization and mesh editing, that heavily use differential geometry quantities. Some related concepts from differential geometry, such as normal, curvature, gradient, Laplacian and their counterparts on digital geometry are also reviewed for understanding the strength and weakness of various digital geometry processing methods.