The cell-biological program termed the epithelial-to-mesenchymal transition (EMT) plays an important role in both development and cancer progression. Depending on the contextual signals and intracellular gene circui...The cell-biological program termed the epithelial-to-mesenchymal transition (EMT) plays an important role in both development and cancer progression. Depending on the contextual signals and intracellular gene circuits of a particular cell, this program can drive fully epithelial cells to enter into a series of phenotypic states arrayed along the epithelial-mesenehymal phenotypic axis. These cell states display distinctive cellular characteristics, including stemness, invasiveness, drug-resistance and the ability to form metastases at distant organs, and thereby contribute to cancer metastasis and relapse. Currently we still lack a coherent overview of the molecular and biochemical mechanisms inducing cells to enter various states along the epithelial-mesenchymal phenotypic spectrum. An improved understanding of the dynamic and plastic nature of the EMT program has the potential to yield novel therapies targeting this cellular program that may aid in the management of high-grade malignancies.展开更多
Recent evidence indicates that mesenchymal stem cells (MSC) possess immunosuppressive properties both in vitro and in vivo. We previously demonstrated the functional abnormality of bone marrow derived MSC in patient...Recent evidence indicates that mesenchymal stem cells (MSC) possess immunosuppressive properties both in vitro and in vivo. We previously demonstrated the functional abnormality of bone marrow derived MSC in patients with systemic lupus erythematosus (SLE). In this study, we aimed to investigate whether transplantation of human bone marrow derived MSC affects the autoimmune pathogenesis in MRL/Ipr mice. We found that human MSC from healthy donors reduced the proliferation of T lymphocytes from MRL/Ipr mice in a dose-dependent fashion. Two weeks after in vivo transfer of MSC, we detected significantly reduced serum levels of anti ds-DNA antibodies and 24 hour proteinuria in MRL/Ipr mice as compared with control groups without MSC transplantation. Moreover, flow cytometric analysis revealed markedly reduced number of CD4+ T cells while increased Thl subpopulation in MSC group and MSC + CTX group when compared with controls. Histopathological examination showed significantly reduced renal pathology in MSC-treated mice. Immunohistochemical studies further revealed reduced expression of TGF-~, FN, VEGF and the deposition of complement C3 in renal tissue after MSC and MSC + CTX treatment. Taken together, we have demonstrated that transplantation of human MSC can significantly inhibit the autoimmune progression in MRL/Ipr mice. Cellular & Molecular Immunology. 2008;5(6):417-424.展开更多
Epithelial-to-mesenchymal transition(EMT)is implicated in a wide array of malignant behaviors of cancers,including proliferation,invasion,and metastasis.Most notably,previou studies have indicated that both cancer ste...Epithelial-to-mesenchymal transition(EMT)is implicated in a wide array of malignant behaviors of cancers,including proliferation,invasion,and metastasis.Most notably,previou studies have indicated that both cancer stem-like properties and drug resistance were associated with EMT.Furthermore,microRNAs(miRNAs)play a pivotal role in the regulation of EMT phenotype,as a result,some miRNAs impact cancer stemness and drug resistance.Therefore,understanding the relationship between EMT-associated miRNAs and cancer stemness/drug resistance is beneficial to both basic research and clinical treatment.In this review,we preliminarily looked into the various roles that the EMT-associated miRNAs play in the stem-like nature of malignant cells.Then,we reviewed the interaction between EMT-associated miRNAs and the drugresistant complex signaling pathways of multiple cancers including lung cancer,gastric cancer,gynecologic cancer,breast cancer,liver cancer,colorectal cancer,pancreatic cancer,esophageal cancer,and nasopharyngeal cancer.We finally discussed the relationship between EMT,cancer stemness,and drug resistance,as well as looked forward to the potential applications of miRNA therapy for malignant tumors.展开更多
Mesenchymal stem cells(MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They...Mesenchymal stem cells(MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses.展开更多
AIM: To investigate the differentiation of human umbilical cord blood (HUCB)-derived mesenchymal stem cells (MSCs) into hepatocytes by induction of fibroblast growth factor-4 (FGF-4) and hepatocyte growth fact...AIM: To investigate the differentiation of human umbilical cord blood (HUCB)-derived mesenchymal stem cells (MSCs) into hepatocytes by induction of fibroblast growth factor-4 (FGF-4) and hepatocyte growth factor (HGF), and to find a new source of cell types for therapies of hepatic diseases. METHODS: MSCs were isolated by combining gradient density centrifugation with plastic adherence. When HUCB-derived MSCs reached 70% confluence, they were cultured in Iscove modified Dulbecco medium (IMDM) supplemented with 10 mL/L FBS, 20 ng/mL HGF and 10 ng/mL FGF-4. The medium was changed every 4 d and stored for albumin, alpha-fetoprotein (AFP) and urea assay. Expression of CK-18 was detected by immunocytochemistry. Glycogen storage in hepatocytes was determined by PAS staining. RESULTS: By combining gradient density centrifugation with plastic adherence, we could isolate MSCs from 25.6% of human umbilical cord blood. When MSCs were cultured with FGF-4 and HGF, approximately 63.6% of cells became small, round and epithelioid on d 28 by morphology. Compared with the control, the level of AFP increased significantly from d 12 to 18.20:1=1.16 μg/L (t = 2.884, P〈0.05) in MSCs cultured with FGF-4 and HGF, and was higher (54.28±3.11 μg/L) on d 28 (t = 13.493, P〈0.01). Albumin increased significantly on d 16 (t = 6.68, P〈0.01) to 1.02±0.15 μg/mL, and to 3.63±0.30 μg/mL on d 28 (t = 11.748, P〈0.01). Urea (4.72±1.03 μmol/L) was detected on d 20 (t = 4.272, P〈0.01), and continued to increase to 10.28±1.06 μmol/L on d 28 (t = 9.276, P〈0.01). Cells expressed CK-18 on d 16. Glycogen storage was observed on d 24. CONCLUSION: HUCB-derived MSCs can differentiate into hepatocytes by induction of F-GF-4 and HGF. HUCB derived MSCs are a new source of cell types for cell transplantation therapy of hepatic diseases.展开更多
文摘The cell-biological program termed the epithelial-to-mesenchymal transition (EMT) plays an important role in both development and cancer progression. Depending on the contextual signals and intracellular gene circuits of a particular cell, this program can drive fully epithelial cells to enter into a series of phenotypic states arrayed along the epithelial-mesenehymal phenotypic axis. These cell states display distinctive cellular characteristics, including stemness, invasiveness, drug-resistance and the ability to form metastases at distant organs, and thereby contribute to cancer metastasis and relapse. Currently we still lack a coherent overview of the molecular and biochemical mechanisms inducing cells to enter various states along the epithelial-mesenchymal phenotypic spectrum. An improved understanding of the dynamic and plastic nature of the EMT program has the potential to yield novel therapies targeting this cellular program that may aid in the management of high-grade malignancies.
基金supported by grants from the National Natural Science Foundation of China (No. 30772014)the Chinese Education Ministry Fundation (No. 20050315001)Jiangsu Province 135 Talent Foundation (No. RC2007002)
文摘Recent evidence indicates that mesenchymal stem cells (MSC) possess immunosuppressive properties both in vitro and in vivo. We previously demonstrated the functional abnormality of bone marrow derived MSC in patients with systemic lupus erythematosus (SLE). In this study, we aimed to investigate whether transplantation of human bone marrow derived MSC affects the autoimmune pathogenesis in MRL/Ipr mice. We found that human MSC from healthy donors reduced the proliferation of T lymphocytes from MRL/Ipr mice in a dose-dependent fashion. Two weeks after in vivo transfer of MSC, we detected significantly reduced serum levels of anti ds-DNA antibodies and 24 hour proteinuria in MRL/Ipr mice as compared with control groups without MSC transplantation. Moreover, flow cytometric analysis revealed markedly reduced number of CD4+ T cells while increased Thl subpopulation in MSC group and MSC + CTX group when compared with controls. Histopathological examination showed significantly reduced renal pathology in MSC-treated mice. Immunohistochemical studies further revealed reduced expression of TGF-~, FN, VEGF and the deposition of complement C3 in renal tissue after MSC and MSC + CTX treatment. Taken together, we have demonstrated that transplantation of human MSC can significantly inhibit the autoimmune progression in MRL/Ipr mice. Cellular & Molecular Immunology. 2008;5(6):417-424.
基金supported by grants from the National Natural Science Foundation of China(81673760 and 81874397).
文摘Epithelial-to-mesenchymal transition(EMT)is implicated in a wide array of malignant behaviors of cancers,including proliferation,invasion,and metastasis.Most notably,previou studies have indicated that both cancer stem-like properties and drug resistance were associated with EMT.Furthermore,microRNAs(miRNAs)play a pivotal role in the regulation of EMT phenotype,as a result,some miRNAs impact cancer stemness and drug resistance.Therefore,understanding the relationship between EMT-associated miRNAs and cancer stemness/drug resistance is beneficial to both basic research and clinical treatment.In this review,we preliminarily looked into the various roles that the EMT-associated miRNAs play in the stem-like nature of malignant cells.Then,we reviewed the interaction between EMT-associated miRNAs and the drugresistant complex signaling pathways of multiple cancers including lung cancer,gastric cancer,gynecologic cancer,breast cancer,liver cancer,colorectal cancer,pancreatic cancer,esophageal cancer,and nasopharyngeal cancer.We finally discussed the relationship between EMT,cancer stemness,and drug resistance,as well as looked forward to the potential applications of miRNA therapy for malignant tumors.
文摘Mesenchymal stem cells(MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses.
基金Supported by National Natural Science Foundation of China, No.30470633Doctoral Foundation of Xi'an Jiaotong University,No.DFXJTU2002-16
文摘AIM: To investigate the differentiation of human umbilical cord blood (HUCB)-derived mesenchymal stem cells (MSCs) into hepatocytes by induction of fibroblast growth factor-4 (FGF-4) and hepatocyte growth factor (HGF), and to find a new source of cell types for therapies of hepatic diseases. METHODS: MSCs were isolated by combining gradient density centrifugation with plastic adherence. When HUCB-derived MSCs reached 70% confluence, they were cultured in Iscove modified Dulbecco medium (IMDM) supplemented with 10 mL/L FBS, 20 ng/mL HGF and 10 ng/mL FGF-4. The medium was changed every 4 d and stored for albumin, alpha-fetoprotein (AFP) and urea assay. Expression of CK-18 was detected by immunocytochemistry. Glycogen storage in hepatocytes was determined by PAS staining. RESULTS: By combining gradient density centrifugation with plastic adherence, we could isolate MSCs from 25.6% of human umbilical cord blood. When MSCs were cultured with FGF-4 and HGF, approximately 63.6% of cells became small, round and epithelioid on d 28 by morphology. Compared with the control, the level of AFP increased significantly from d 12 to 18.20:1=1.16 μg/L (t = 2.884, P〈0.05) in MSCs cultured with FGF-4 and HGF, and was higher (54.28±3.11 μg/L) on d 28 (t = 13.493, P〈0.01). Albumin increased significantly on d 16 (t = 6.68, P〈0.01) to 1.02±0.15 μg/mL, and to 3.63±0.30 μg/mL on d 28 (t = 11.748, P〈0.01). Urea (4.72±1.03 μmol/L) was detected on d 20 (t = 4.272, P〈0.01), and continued to increase to 10.28±1.06 μmol/L on d 28 (t = 9.276, P〈0.01). Cells expressed CK-18 on d 16. Glycogen storage was observed on d 24. CONCLUSION: HUCB-derived MSCs can differentiate into hepatocytes by induction of F-GF-4 and HGF. HUCB derived MSCs are a new source of cell types for cell transplantation therapy of hepatic diseases.