Bckground Stem cells, which have the ability to differentiate into insulin-producing cells (IPCs), would provide a potentially unlimited source of islet cells for transplantation and alleviate the major limitations ...Bckground Stem cells, which have the ability to differentiate into insulin-producing cells (IPCs), would provide a potentially unlimited source of islet cells for transplantation and alleviate the major limitations of availability and allogeneic rejection. Therefore, the utilization of stem cells is becoming the most promising therapy for diabetes mellitus (DM). Here, we studied the differentiation capacity of the diabetic patient's bone marrow-derived mesenchymal stem cells (MSCs) and tested the feasibility of using MSCs for β-cell replacement. Methods Bone marrow-derived MSCs were obtained from 10 DM patients (5 type 1 DM and 5 type 2 DM) and induced to IPCs under a three-stage protocol. Representative cell surface antigen expression profiles of MSCs were analysed by flow cytometric analysis. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect multiple genes related to pancreatic β-cell development and function. The identity of the IPCs was illustrated by the analysis of morphology, ditizone staining and immunocytochemistry. Release of insulin by these cells was confirmed by immunoradioassay. Results Flow cytometric analysis of MSCs at passage 3 showed that these cells expressed high levels of CD29 (98.28%), CD44 (99.56%) and CD106 (98.34%). Typical islet-like cell clusters were observed at the end of the protocol (18 days). Ditizone staining and immunohistochemistry for insulin were both positive. These differentiated cells at stage 2 (10 days) expressed nestin, pancreatic duodenal homeobox-1 (PDX-1), Neurogenin3, Pax4, insulin, glucagon, but at stage 3 (18 days) we observed the high expression of PDX-1, insulin, glucagon. Insulin was secreted by these cells in response to different concentrations of glucose stimulation in a regulated manner (P〈0.05). Conclusions Bone marrow-derived MSCs from DM patients can differentiate into functional IPCs under certain conditions in vitro. Using diabetic patient's own bone marrow-deriv展开更多
Background and objective: Umbilical cord (UC)-derived mesenchymal stem cells (MSCs) have shown immunoregulation of various immune cells. The aim of this study was to investigate the mechanism of UC MSCs in the re...Background and objective: Umbilical cord (UC)-derived mesenchymal stem cells (MSCs) have shown immunoregulation of various immune cells. The aim of this study was to investigate the mechanism of UC MSCs in the regulation of peripheral regulatory T cells (Treg) and T helper 17 (Th17) cells in patients with systemic lupus erythematosus (SLE). Methods: Thirty patients with active SLE, refractory to conventional therapies, were given UC MSCs infusions. The percentages of peripheral blood CD4+CD25+Foxp3+ regulatory T cells (Treg) and CD3+CD8-1L17A+ Th17 cells and the mean fluorescence intensities (MFI) of Foxp3 and IL- 17 were measured at I week, I month, 3 months, 6 months, and 12 months after MSCs transplantation (MSCT). Serum cytokines, including transforming growth factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-17A were detected using ELISA. Peripheral blood mononuclear cells from patients were collected and co-cultured with UC MSCs at ratios of 1:1, 10:1, and 50:1, respectively, for 72 h to detect the proportions of Treg and Th17 cells and the MFIs of Foxp3 and IL-17 were determined by flow cytometry. The cytokines in the supernatant solution were detected using ELISA. Inhibitors targeting TGF-β, IL-6, indoleamine 2,3-dioxygenase (IDO), and prostaglandin E2 were added to the co-culture system, and the percentages of Treg and Th17 cells were observed. Results: The percentage of peripheral Treg and Foxp3 MFI increased 1 week, 1 month, and 3 months after UC MSCs transplantation, while the Th17 proportion and MFI of IL-17 decreased 3 months, 6 months, and 12 months after the treatment, along with an increase in serum TGF-β at I week, 3 months, and 12 months and a decrease in serum TNF-a beginning at I week. There were no alterations in serums IL-6 and IL-17A before or after MSCT. In vitro studies showed that the UC MSCs dose-dependently up-regulated peripheral Treg proportion in SLE patients, which was no展开更多
Human umbilical cord(UC)is a promising source of mesenchymal stem cells(MSCs).Apart from their prominent advantages,such as a painless collection procedure and faster self-renewal,UC-MSCs have shown the ability to dif...Human umbilical cord(UC)is a promising source of mesenchymal stem cells(MSCs).Apart from their prominent advantages,such as a painless collection procedure and faster self-renewal,UC-MSCs have shown the ability to differentiate into three germ layers,to accumulate in damaged tissue or inflamed regions,to promote tissue repair,and to modulate immune response.There are diverse protocols and culture methods for the isolation of MSCs from the various compartments of UC,such as Wharton’s jelly,vein,arteries,UC lining and subamnion and perivascular regions.In this review,we give a brief introduction to various compartments of UC as a source of MSCs and emphasize the potential clinical utility of UC-MSCs for regenerative medicine and immunotherapy.展开更多
BACKGROUND: Acute rejection after liver transplantation is usually treated with large doses of immunosuppressants with severe toxic and side-effects, so it is imperative to find a safe and effective method for prevent...BACKGROUND: Acute rejection after liver transplantation is usually treated with large doses of immunosuppressants with severe toxic and side-effects, so it is imperative to find a safe and effective method for preventing and treating rejection. This study was designed to confirm the immunomodulatory effects of rat mesenchymal stem cells (MSCs) in vitro and investigate the tolerogenic features in a rat model of allogeneic liver transplantation. METHODS: MSCs were isolated from adipose tissue of Sprague-Dawley (SD) rats and cultured. In vitro, MSCs were added into a mixed lymphocyte culture (MLC) system to study the inhibitory effects of MSCs on the proliferation of T lymphocytes in Wistar rats. By using SD and Wistar rats as liver donors and recipients, an orthotopic liver transplantation model was established and the rats were divided into a MSC-treated group and a blank control group. On postoperative day 7, all rats were sacrificed, and the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), interleukin-2 (IL-2) and interleukin-10 (IL-10) were measured. The pathological changes of liver tissue and apoptosis of hepatocytes were also assessed. RESULTS: In in vitro MLC, T lymphocyte proliferation in Wistar rats was significantly inhibited by 48.44%. In the MSC-treated group, the levels of ALT, AST, TBIL, IL-2 and IL-10 were 134.2 +/- 45.0 U/L, 162.5 +/- 30.5 U/L, 30.6 +/- 5.4 mu mol/L, 187.35 +/- 18.26 mu g/L and 193.95 +/- 37.62 mu g/L, and those in the blank control group were 355.6 +/- 54.3 U/L, 296.4 +/- 71.2 U/L, 145.7 +/- 28.6 +/- mol/L, 295.73 +/- 57.15 mu g/L and 75.12 +/- 11.23 mu g/L, respectively, with statistically significant differences (P<0.05). Pathological examination revealed that the rejection in the MSC-treated group was clearly alleviated compared with that in the blank control group. TUNEL indicated that the apoptosis of hepatocytes in the MSC-treated group was milder than that in the blank control group (P<0.05). CONCLUSION: Adipose-derived MSC展开更多
Objective To review the recent studies about human umbilical cord mesenchymal stem cells (hUCMSCs) and advances in the treatment of spinal cord injury. Data sources Published articles (1983-2007) about hUCMSCs and...Objective To review the recent studies about human umbilical cord mesenchymal stem cells (hUCMSCs) and advances in the treatment of spinal cord injury. Data sources Published articles (1983-2007) about hUCMSCs and spinal cord injury were selected using Medline. Study selection Articles selected were relevant to development of mesenchymal stem cells (MSCs) for transplantation in spinal cord injury therapy. Of 258 originally identified articles 51 were selected that specifically addressed the stated purpose. Results Recent work has revealed that hUCMSCs share most of the characteristics with MSCs derived from bone marrow and are more appropriate to transplantation for cell based therapies. Conclusions Human umbilical cord could be regarded as a source of MSCs for experimental and clinical needs. In addition, as a peculiar source of stem cells, hUCMSCs may play an important role in the treatment of spinal cord injury. Chin Med J 2009;122(2):225-231展开更多
文摘Bckground Stem cells, which have the ability to differentiate into insulin-producing cells (IPCs), would provide a potentially unlimited source of islet cells for transplantation and alleviate the major limitations of availability and allogeneic rejection. Therefore, the utilization of stem cells is becoming the most promising therapy for diabetes mellitus (DM). Here, we studied the differentiation capacity of the diabetic patient's bone marrow-derived mesenchymal stem cells (MSCs) and tested the feasibility of using MSCs for β-cell replacement. Methods Bone marrow-derived MSCs were obtained from 10 DM patients (5 type 1 DM and 5 type 2 DM) and induced to IPCs under a three-stage protocol. Representative cell surface antigen expression profiles of MSCs were analysed by flow cytometric analysis. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect multiple genes related to pancreatic β-cell development and function. The identity of the IPCs was illustrated by the analysis of morphology, ditizone staining and immunocytochemistry. Release of insulin by these cells was confirmed by immunoradioassay. Results Flow cytometric analysis of MSCs at passage 3 showed that these cells expressed high levels of CD29 (98.28%), CD44 (99.56%) and CD106 (98.34%). Typical islet-like cell clusters were observed at the end of the protocol (18 days). Ditizone staining and immunohistochemistry for insulin were both positive. These differentiated cells at stage 2 (10 days) expressed nestin, pancreatic duodenal homeobox-1 (PDX-1), Neurogenin3, Pax4, insulin, glucagon, but at stage 3 (18 days) we observed the high expression of PDX-1, insulin, glucagon. Insulin was secreted by these cells in response to different concentrations of glucose stimulation in a regulated manner (P〈0.05). Conclusions Bone marrow-derived MSCs from DM patients can differentiate into functional IPCs under certain conditions in vitro. Using diabetic patient's own bone marrow-deriv
文摘Background and objective: Umbilical cord (UC)-derived mesenchymal stem cells (MSCs) have shown immunoregulation of various immune cells. The aim of this study was to investigate the mechanism of UC MSCs in the regulation of peripheral regulatory T cells (Treg) and T helper 17 (Th17) cells in patients with systemic lupus erythematosus (SLE). Methods: Thirty patients with active SLE, refractory to conventional therapies, were given UC MSCs infusions. The percentages of peripheral blood CD4+CD25+Foxp3+ regulatory T cells (Treg) and CD3+CD8-1L17A+ Th17 cells and the mean fluorescence intensities (MFI) of Foxp3 and IL- 17 were measured at I week, I month, 3 months, 6 months, and 12 months after MSCs transplantation (MSCT). Serum cytokines, including transforming growth factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-17A were detected using ELISA. Peripheral blood mononuclear cells from patients were collected and co-cultured with UC MSCs at ratios of 1:1, 10:1, and 50:1, respectively, for 72 h to detect the proportions of Treg and Th17 cells and the MFIs of Foxp3 and IL-17 were determined by flow cytometry. The cytokines in the supernatant solution were detected using ELISA. Inhibitors targeting TGF-β, IL-6, indoleamine 2,3-dioxygenase (IDO), and prostaglandin E2 were added to the co-culture system, and the percentages of Treg and Th17 cells were observed. Results: The percentage of peripheral Treg and Foxp3 MFI increased 1 week, 1 month, and 3 months after UC MSCs transplantation, while the Th17 proportion and MFI of IL-17 decreased 3 months, 6 months, and 12 months after the treatment, along with an increase in serum TGF-β at I week, 3 months, and 12 months and a decrease in serum TNF-a beginning at I week. There were no alterations in serums IL-6 and IL-17A before or after MSCT. In vitro studies showed that the UC MSCs dose-dependently up-regulated peripheral Treg proportion in SLE patients, which was no
文摘Human umbilical cord(UC)is a promising source of mesenchymal stem cells(MSCs).Apart from their prominent advantages,such as a painless collection procedure and faster self-renewal,UC-MSCs have shown the ability to differentiate into three germ layers,to accumulate in damaged tissue or inflamed regions,to promote tissue repair,and to modulate immune response.There are diverse protocols and culture methods for the isolation of MSCs from the various compartments of UC,such as Wharton’s jelly,vein,arteries,UC lining and subamnion and perivascular regions.In this review,we give a brief introduction to various compartments of UC as a source of MSCs and emphasize the potential clinical utility of UC-MSCs for regenerative medicine and immunotherapy.
文摘BACKGROUND: Acute rejection after liver transplantation is usually treated with large doses of immunosuppressants with severe toxic and side-effects, so it is imperative to find a safe and effective method for preventing and treating rejection. This study was designed to confirm the immunomodulatory effects of rat mesenchymal stem cells (MSCs) in vitro and investigate the tolerogenic features in a rat model of allogeneic liver transplantation. METHODS: MSCs were isolated from adipose tissue of Sprague-Dawley (SD) rats and cultured. In vitro, MSCs were added into a mixed lymphocyte culture (MLC) system to study the inhibitory effects of MSCs on the proliferation of T lymphocytes in Wistar rats. By using SD and Wistar rats as liver donors and recipients, an orthotopic liver transplantation model was established and the rats were divided into a MSC-treated group and a blank control group. On postoperative day 7, all rats were sacrificed, and the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), interleukin-2 (IL-2) and interleukin-10 (IL-10) were measured. The pathological changes of liver tissue and apoptosis of hepatocytes were also assessed. RESULTS: In in vitro MLC, T lymphocyte proliferation in Wistar rats was significantly inhibited by 48.44%. In the MSC-treated group, the levels of ALT, AST, TBIL, IL-2 and IL-10 were 134.2 +/- 45.0 U/L, 162.5 +/- 30.5 U/L, 30.6 +/- 5.4 mu mol/L, 187.35 +/- 18.26 mu g/L and 193.95 +/- 37.62 mu g/L, and those in the blank control group were 355.6 +/- 54.3 U/L, 296.4 +/- 71.2 U/L, 145.7 +/- 28.6 +/- mol/L, 295.73 +/- 57.15 mu g/L and 75.12 +/- 11.23 mu g/L, respectively, with statistically significant differences (P<0.05). Pathological examination revealed that the rejection in the MSC-treated group was clearly alleviated compared with that in the blank control group. TUNEL indicated that the apoptosis of hepatocytes in the MSC-treated group was milder than that in the blank control group (P<0.05). CONCLUSION: Adipose-derived MSC
基金This study was supported by the grants from National Natural Science Foundation of China (No. 30872603), New Century Excellent Talents Programme of Ministry of Education of China (No. NCET060251) and Applied Basic Research Programmes of Science and Technology Commission Foundation of Tianjin (No. 07JCYBJC10200).
文摘Objective To review the recent studies about human umbilical cord mesenchymal stem cells (hUCMSCs) and advances in the treatment of spinal cord injury. Data sources Published articles (1983-2007) about hUCMSCs and spinal cord injury were selected using Medline. Study selection Articles selected were relevant to development of mesenchymal stem cells (MSCs) for transplantation in spinal cord injury therapy. Of 258 originally identified articles 51 were selected that specifically addressed the stated purpose. Results Recent work has revealed that hUCMSCs share most of the characteristics with MSCs derived from bone marrow and are more appropriate to transplantation for cell based therapies. Conclusions Human umbilical cord could be regarded as a source of MSCs for experimental and clinical needs. In addition, as a peculiar source of stem cells, hUCMSCs may play an important role in the treatment of spinal cord injury. Chin Med J 2009;122(2):225-231