Actuators are one of the key points for the development of active flow control technology.Efficient methods of high speed flow control can provide enhanced propulsive efficiency and at the same time enable safe and ma...Actuators are one of the key points for the development of active flow control technology.Efficient methods of high speed flow control can provide enhanced propulsive efficiency and at the same time enable safe and maneuverable high speed flight.The development of high speed flight technology promotes the emergence of novel and robust actuators.This review introduces the state of the art in the development of actuators that can be used in high speed active flow control.The classification and different operation criteria of the actuators are discussed.The specifications,mechanisms and applications of various popular actuator types including fluidic,mechanical,and plasma actuators are described.Based on the realistic need of high speed flow control and the existing results of actuators,a new actuator design method is proposed.At last,the merits and drawbacks of the actuators are summarized and some suggestions on the development of active flow control technology are put forward.展开更多
CMOS platforms with a high nonlinear figure of merit are highly sought after for high photonic quantum efficiencies, enabling functionalities not possible from purely linear effects and ease of integration with CMOS e...CMOS platforms with a high nonlinear figure of merit are highly sought after for high photonic quantum efficiencies, enabling functionalities not possible from purely linear effects and ease of integration with CMOS electronics. Silicon-based platforms have been prolific amongst the suite of advanced nonlinear optical signal processes demonstrated to date. These include crystalline silicon, amorphous silicon, Hydex glass, and stoichio- metric silicon nitride. Residing between stoichiometric silicon nitride and amorphous silicon in composition, silicon-rich nitride films of various formulations have emerged recently as promising nonlinear platforms for high nonlinear figure of merit nonlinear optics. Silicon-rich nitride films are compositionally engineered to create bandgaps that are sufficiently large to eliminate two-photon absorption at telecommunications wavelengths while enabling much larger nonlinear waveguide parameters (5x-500x) than those in stoichiometric silicon uitride. This paper reviews recent developments in the field of nonlinear optics using silicon-rich nitride platforms, as well as the outlook and future opportunities in this burgeoning field.展开更多
Finding binary sequences with Large SHG ratios is very important in the field of ultrafast science, biomedical optics, high-resolution microscopy and label-free imaging. In this paper, we have demonstrated the relatio...Finding binary sequences with Large SHG ratios is very important in the field of ultrafast science, biomedical optics, high-resolution microscopy and label-free imaging. In this paper, we have demonstrated the relation between the SHG contrast ratio and the traditional Merit Factor values. And in the light from known results in Merit Factor Problems, we have shown that Legendre Sequences or Jacobi Sequences, are still the best candidates to obtain binary sequences with large SHG contrast ratios. The authors also discussed the SHG behaviors on some sequences obtained from cyclotomic classes over the finite field GF (2l) .展开更多
The purpose of this paper is to present the results of investigations on quasi-one-dimensional organic crystals of tetrathiotetracene-tetracyanoquinodi- methane (TTT(TCNQ)<sub>2</sub>) from the prospective...The purpose of this paper is to present the results of investigations on quasi-one-dimensional organic crystals of tetrathiotetracene-tetracyanoquinodi- methane (TTT(TCNQ)<sub>2</sub>) from the prospective of thermoelectric applications. The calculations were performed after analytical expressions, obtained in the frame of a physical model, more detailed than the model presented earlier by authors. The main Hamiltonian of the model includes the electronic and phonon part, electron-phonon interactions and the impurity scattering term. In order to estimate the electric charge transport between the molecular chains, the physical model was upgraded to the so-called three-dimen- sional (3D) physical model. Numeric computations were performed to determine the electrical conductivity, Seebeck coefficient, thermal conductivity, thermoelectric power factor and thermoelectric figure-of-merit as a function on charge carrier concentrations, temperatures and impurity concentrations. A detailed analysis of charge-lattice interaction, consisting of the exploration of the Peierls structural transition in TCNQ molecular chains of TTT(TCNQ)<sub>2</sub> was performed. As result, the critical transition temperature was determined. The dispersion of renormalized phonons was examined in detail.展开更多
Half-metallic ferromagnetism,mechanical as well as thermoelectric properties for rare earth-based spinels MgHo_(2)Z_(4)(Z=S,Se)were investigated using density functional theory(DFT).Structural optimization was done wi...Half-metallic ferromagnetism,mechanical as well as thermoelectric properties for rare earth-based spinels MgHo_(2)Z_(4)(Z=S,Se)were investigated using density functional theory(DFT).Structural optimization was done with Perdew-Burke-Ehrenzorf(PBE)sol-generalized gradient approximation(GGA)to calculate the lattice constant of both spinels comparable to experimental data.In addition,Born stability criteria and negative formation energy show that our studied spinels are also structurally and dynamically stable in the cubic phase.For ferromagnetic(FM)state stability,we also calculated the energy differences among FM,antiferromagnetic(AFM),and non-magnetic(NM)states.Additionally,Curie temperatures of ferromagnetic phases were also estimated.We used Trans-Blaha improved BeckeJohnson(TB-mBJ)potential functional for electronics as well as magnetic characteristics,which lead to the consistent explanation of half-metallic ferromagnetism,representing the whole band-occupancy in material with exact detail of density of states(DOS).The stable FM state was examined in spinels due to the exchange splitting of Ho cation consisting of p-d hybridizations compatible with the result achieved for electronics band structure and DOS.Further,spin magnetic moment was explained in terms of anion,cation,and sharing charge on studied spinels.In addition,the calculated thermoelectric properties clearly show that operation range of these systems may be utilized by future experimental works for identifying the potential applications of these systems.展开更多
This paper proposes an interior-point technique for detecting the nondominated points of multi-objective optimization problems using the direction-based cone method.Cone method decomposes the multi-objective optimizat...This paper proposes an interior-point technique for detecting the nondominated points of multi-objective optimization problems using the direction-based cone method.Cone method decomposes the multi-objective optimization problems into a set of single-objective optimization problems.For this set of problems,parametric perturbed KKT conditions are derived.Subsequently,an interior point technique is developed to solve the parametric perturbed KKT conditions.A differentiable merit function is also proposed whose stationary point satisfies the KKT conditions.Under some mild assumptions,the proposed algorithm is shown to be globally convergent.Numerical results of unconstrained and constrained multi-objective optimization test problems are presented.Also,three performance metrics(modified generational distance,hypervolume,inverted generational distance)are used on some test problems to investigate the efficiency of the proposed algorithm.We also compare the results of the proposed algorithm with the results of some other existing popular methods.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11002161)the Foundation for the Author of National Excellent Doctor Dissertation of China (Grant No. 201058)the Specialized Research Fund for the Doctor Program of Higher Education of China (Grant No. 20104307110007)
文摘Actuators are one of the key points for the development of active flow control technology.Efficient methods of high speed flow control can provide enhanced propulsive efficiency and at the same time enable safe and maneuverable high speed flight.The development of high speed flight technology promotes the emergence of novel and robust actuators.This review introduces the state of the art in the development of actuators that can be used in high speed active flow control.The classification and different operation criteria of the actuators are discussed.The specifications,mechanisms and applications of various popular actuator types including fluidic,mechanical,and plasma actuators are described.Based on the realistic need of high speed flow control and the existing results of actuators,a new actuator design method is proposed.At last,the merits and drawbacks of the actuators are summarized and some suggestions on the development of active flow control technology are put forward.
基金MOE Academic Research Fund Tier 2 GrantNational Research Foundation Competitive Research Grant+3 种基金National Research Foundation Land and Liveability National Innovation Challenge GrantSUTD-MIT International Design CenterTemasek Laboratories grantNational Research Foundation,Prime Minister’s Office,Singapore,under its Medium Sized Centre Program
文摘CMOS platforms with a high nonlinear figure of merit are highly sought after for high photonic quantum efficiencies, enabling functionalities not possible from purely linear effects and ease of integration with CMOS electronics. Silicon-based platforms have been prolific amongst the suite of advanced nonlinear optical signal processes demonstrated to date. These include crystalline silicon, amorphous silicon, Hydex glass, and stoichio- metric silicon nitride. Residing between stoichiometric silicon nitride and amorphous silicon in composition, silicon-rich nitride films of various formulations have emerged recently as promising nonlinear platforms for high nonlinear figure of merit nonlinear optics. Silicon-rich nitride films are compositionally engineered to create bandgaps that are sufficiently large to eliminate two-photon absorption at telecommunications wavelengths while enabling much larger nonlinear waveguide parameters (5x-500x) than those in stoichiometric silicon uitride. This paper reviews recent developments in the field of nonlinear optics using silicon-rich nitride platforms, as well as the outlook and future opportunities in this burgeoning field.
文摘Finding binary sequences with Large SHG ratios is very important in the field of ultrafast science, biomedical optics, high-resolution microscopy and label-free imaging. In this paper, we have demonstrated the relation between the SHG contrast ratio and the traditional Merit Factor values. And in the light from known results in Merit Factor Problems, we have shown that Legendre Sequences or Jacobi Sequences, are still the best candidates to obtain binary sequences with large SHG contrast ratios. The authors also discussed the SHG behaviors on some sequences obtained from cyclotomic classes over the finite field GF (2l) .
文摘The purpose of this paper is to present the results of investigations on quasi-one-dimensional organic crystals of tetrathiotetracene-tetracyanoquinodi- methane (TTT(TCNQ)<sub>2</sub>) from the prospective of thermoelectric applications. The calculations were performed after analytical expressions, obtained in the frame of a physical model, more detailed than the model presented earlier by authors. The main Hamiltonian of the model includes the electronic and phonon part, electron-phonon interactions and the impurity scattering term. In order to estimate the electric charge transport between the molecular chains, the physical model was upgraded to the so-called three-dimen- sional (3D) physical model. Numeric computations were performed to determine the electrical conductivity, Seebeck coefficient, thermal conductivity, thermoelectric power factor and thermoelectric figure-of-merit as a function on charge carrier concentrations, temperatures and impurity concentrations. A detailed analysis of charge-lattice interaction, consisting of the exploration of the Peierls structural transition in TCNQ molecular chains of TTT(TCNQ)<sub>2</sub> was performed. As result, the critical transition temperature was determined. The dispersion of renormalized phonons was examined in detail.
基金the Deanship of Scientific Research at King Khalid University for funding this work through the small Groups Project under grant number(R.G.P.1/153/43)。
文摘Half-metallic ferromagnetism,mechanical as well as thermoelectric properties for rare earth-based spinels MgHo_(2)Z_(4)(Z=S,Se)were investigated using density functional theory(DFT).Structural optimization was done with Perdew-Burke-Ehrenzorf(PBE)sol-generalized gradient approximation(GGA)to calculate the lattice constant of both spinels comparable to experimental data.In addition,Born stability criteria and negative formation energy show that our studied spinels are also structurally and dynamically stable in the cubic phase.For ferromagnetic(FM)state stability,we also calculated the energy differences among FM,antiferromagnetic(AFM),and non-magnetic(NM)states.Additionally,Curie temperatures of ferromagnetic phases were also estimated.We used Trans-Blaha improved BeckeJohnson(TB-mBJ)potential functional for electronics as well as magnetic characteristics,which lead to the consistent explanation of half-metallic ferromagnetism,representing the whole band-occupancy in material with exact detail of density of states(DOS).The stable FM state was examined in spinels due to the exchange splitting of Ho cation consisting of p-d hybridizations compatible with the result achieved for electronics band structure and DOS.Further,spin magnetic moment was explained in terms of anion,cation,and sharing charge on studied spinels.In addition,the calculated thermoelectric properties clearly show that operation range of these systems may be utilized by future experimental works for identifying the potential applications of these systems.
基金financial support from Council of Scientific and Industrial Research,India through a research fellowship(File No.09/1217(0025)/2017-EMR-I)to carry out this research workDebdas Ghosh acknowledges the research grant(MTR/2021/000696)from SERB,India to carry out this research work.
文摘This paper proposes an interior-point technique for detecting the nondominated points of multi-objective optimization problems using the direction-based cone method.Cone method decomposes the multi-objective optimization problems into a set of single-objective optimization problems.For this set of problems,parametric perturbed KKT conditions are derived.Subsequently,an interior point technique is developed to solve the parametric perturbed KKT conditions.A differentiable merit function is also proposed whose stationary point satisfies the KKT conditions.Under some mild assumptions,the proposed algorithm is shown to be globally convergent.Numerical results of unconstrained and constrained multi-objective optimization test problems are presented.Also,three performance metrics(modified generational distance,hypervolume,inverted generational distance)are used on some test problems to investigate the efficiency of the proposed algorithm.We also compare the results of the proposed algorithm with the results of some other existing popular methods.
基金supported by the Natural Science Foundation for Distinguished Young Scholars of Hubei Province of China (2023AFA065)the National Key Research and Development Program (2019YFB2205100)Hubei Province Key Scientific and Technological Project (2022AEA001)。