This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,e...This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,economics and water resources of the Tarim River Basin in 2002,we evaluated the water resources carrying capacity of the basin by means of the model. The results show that the comprehensive grades are 0.438 and 0.454 for Aksu and Kashi prefectures respectively,where the current water resources exploitation and utilization has reached a relative high degree and there is only a very limited water carrying capacity,0.620 for Kizilsu Kirgiz Autonomous Prefecture,where water resources carrying capacity is much higher,and in between for Hotan Prefecture and Bayingolin Mongo-lian Autonomous Prefecture. As a whole,the comprehensive grade of the Tarim River Basin is 0.508 and the current water resources exploitation and utilization has reached a relative high degree. Thus,we suggest that the integrated management of the water resources in the basin should be strengthened in order to utilize water resources scientifically and sustainably.展开更多
Drought is one of the major natural disasters causing huge agricultural losses annually. Regional agricultural drought risk assessment has great significance for reducing regional disaster and agricultural drought los...Drought is one of the major natural disasters causing huge agricultural losses annually. Regional agricultural drought risk assessment has great significance for reducing regional disaster and agricultural drought losses. Based on the fuzzy characteristics of agricultural drought risk, variable fuzzy sets model was used for comprehensively assessing agricultural drought risk of Liaoning Province in China. A multi-layers and multi-indices assessment model was estab-lished according to variable fuzzy sets theory, and agricultural drought risk of all 14 prefecture-level cities was respec-tively estimated in terms of dangerousness, vulnerability, exposure and drought-resistibility. By calculating the combi-nation weights of four drought risk factors, agricultural drought risk grade of each city was obtained. Based on the as-sessment results, the spatial distribution maps of agricultural drought risk were drawn. The results shows that eastern cities have lower drought dangerousness than western cities in Liaoning Province totally. Most cities are located in low drought vulnerability region and high drought exposure region. Because of frequent and severe drought since 2000, most cities are located in lower drought-resistibility region. Comprehensive agricultural drought risk presents apparent spatial characteristics, escalating from the east to the west. Drought dangerousness is the most important factor influencing comprehensive agricultural drought risk. Through the spatial distribution maps of drought risk, decision makers could find out drought situation and make decisions on drought resistance conveniently.展开更多
For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. Th...For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. The coefficient of variation of each indicator is used to determine the weight instead of traditional calculating superscales method. On the other hand, fuzzy matter-elements are constructed, and normal membership degrees are used instead of traditional trapezoidal ones. The composite fuzzy matter-elements with associated coefficient are constructed through associated transformation. The levels of natural water quality are determined according to the principle of maximum correlation. The improved fuzzy matter-element evaluation method is applied to evaluate water quality of the Luokou mainstream estuary at the first ten weeks in 2011 with the coefficient of variatiola method determining the weights. Water quality of Luokou mainstream estuary is dropping from level I to level II. The results of the improved evaluation method are basically the same as the official water quality. The variation coefficient method can reduce the workload, and overcome the adverse effects from abnormal values, compared with the traditional calculating superscales method. The results of improved fuzzy matter- element evaluation method are more credible than the ones of the traditional evaluation method. The improved evaluation method can use information of monitoring data more scientifically and comprehensively, and broaden a new evaluation method for water quality assessment.展开更多
基金Under the auspices of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-127)National Natural Science Foundation of China (No. 40671014, 90502007)
文摘This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,economics and water resources of the Tarim River Basin in 2002,we evaluated the water resources carrying capacity of the basin by means of the model. The results show that the comprehensive grades are 0.438 and 0.454 for Aksu and Kashi prefectures respectively,where the current water resources exploitation and utilization has reached a relative high degree and there is only a very limited water carrying capacity,0.620 for Kizilsu Kirgiz Autonomous Prefecture,where water resources carrying capacity is much higher,and in between for Hotan Prefecture and Bayingolin Mongo-lian Autonomous Prefecture. As a whole,the comprehensive grade of the Tarim River Basin is 0.508 and the current water resources exploitation and utilization has reached a relative high degree. Thus,we suggest that the integrated management of the water resources in the basin should be strengthened in order to utilize water resources scientifically and sustainably.
基金Under the auspices of Key Program of National Key Technology R & D Program of China (No. 2007BAB28B01)
文摘Drought is one of the major natural disasters causing huge agricultural losses annually. Regional agricultural drought risk assessment has great significance for reducing regional disaster and agricultural drought losses. Based on the fuzzy characteristics of agricultural drought risk, variable fuzzy sets model was used for comprehensively assessing agricultural drought risk of Liaoning Province in China. A multi-layers and multi-indices assessment model was estab-lished according to variable fuzzy sets theory, and agricultural drought risk of all 14 prefecture-level cities was respec-tively estimated in terms of dangerousness, vulnerability, exposure and drought-resistibility. By calculating the combi-nation weights of four drought risk factors, agricultural drought risk grade of each city was obtained. Based on the as-sessment results, the spatial distribution maps of agricultural drought risk were drawn. The results shows that eastern cities have lower drought dangerousness than western cities in Liaoning Province totally. Most cities are located in low drought vulnerability region and high drought exposure region. Because of frequent and severe drought since 2000, most cities are located in lower drought-resistibility region. Comprehensive agricultural drought risk presents apparent spatial characteristics, escalating from the east to the west. Drought dangerousness is the most important factor influencing comprehensive agricultural drought risk. Through the spatial distribution maps of drought risk, decision makers could find out drought situation and make decisions on drought resistance conveniently.
基金supported by the National Natural Science Foundation of China (No. 41071322, 71031001)
文摘For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. The coefficient of variation of each indicator is used to determine the weight instead of traditional calculating superscales method. On the other hand, fuzzy matter-elements are constructed, and normal membership degrees are used instead of traditional trapezoidal ones. The composite fuzzy matter-elements with associated coefficient are constructed through associated transformation. The levels of natural water quality are determined according to the principle of maximum correlation. The improved fuzzy matter-element evaluation method is applied to evaluate water quality of the Luokou mainstream estuary at the first ten weeks in 2011 with the coefficient of variatiola method determining the weights. Water quality of Luokou mainstream estuary is dropping from level I to level II. The results of the improved evaluation method are basically the same as the official water quality. The variation coefficient method can reduce the workload, and overcome the adverse effects from abnormal values, compared with the traditional calculating superscales method. The results of improved fuzzy matter- element evaluation method are more credible than the ones of the traditional evaluation method. The improved evaluation method can use information of monitoring data more scientifically and comprehensively, and broaden a new evaluation method for water quality assessment.