Heteroatom-doped carbon-based transition-metal single-atom catalysts(SACs) are promising electrocatalysts for oxygen reduction reaction(ORR). Herein, with the aid of hierarchically porous silica as hard template, a fa...Heteroatom-doped carbon-based transition-metal single-atom catalysts(SACs) are promising electrocatalysts for oxygen reduction reaction(ORR). Herein, with the aid of hierarchically porous silica as hard template, a facile and general melting perfusion and mesopore-confined pyrolysis method was reported to prepare single-atomic Fe/N–S-doped carbon catalyst(FeNx/NC-S) with hierarchically porous structure and well-defined morphology. The FeNx/NC-S exhibited excellent ORR activity with a half-wave potential(E_(1/2)) of 0.92 V, and a lower overpotential of 320 mV at a current density of 10 mA cm^(-2)for OER under alkaline condition. The remarkable electrocatalysis performance can be attributed to the hierarchically porous carbon nanospheres with S doping and high content of Fe-Nx sites(up to 3.7 wt% of Fe), resulting from the nano-confinement effect of the hierarchically porous silica spheres(NKM-5) during the pyrolysis process. The rechargeable Zn-air battery with FeNx/NC-S as a cathode catalyst demonstrated a superior power density of 194.5 mW cm-2charge–discharge stability. This work highlights a new avenue to design advanced SACs for efficient sustainable energy storage and conversion.展开更多
Phosphorus removal from oolitic high-phosphorus hematite using direct reduction followed by melting sep aration was investigated. At the direct reduction stage, highly volatile wood char was prepared by carbonizing ju...Phosphorus removal from oolitic high-phosphorus hematite using direct reduction followed by melting sep aration was investigated. At the direct reduction stage, highly volatile wood char was prepared by carbonizing jujube wood at 673 K for 2 h and was used as reducing agent. The results of the direct reduction tests show that at a tem- perature of 1373 K, a char mixing ratio of 0.8, and a reduction time of 10-25 min, the briquettes reached a metal- lization degree of 80% -84% and a residual carbon content of 0.13 -1.98 mass%. Phosphorus remained in the gangue as calcium phosphate after reduction. The results of the melting separation tests show that residual carbon in reduced briquette negatively affects the phosphorus content (W[p]) in hot metal. When the reduced briquettes ob- tained under the aforementioned conditions were used for melting separation, hot metal suitable for basic oxygen steelmaking (w[p]〈0.4 mass%) could not be obtained from metallic briquettes with a residual carbon content more than 1.0 mass~. In contrast, it could be obtained from metallic briquettes with residual carbon content less than 0.35 mass% by mixing with 2%-4% Na2CO3.展开更多
基金supported by National Natural Science Foundation of China (21773128)。
文摘Heteroatom-doped carbon-based transition-metal single-atom catalysts(SACs) are promising electrocatalysts for oxygen reduction reaction(ORR). Herein, with the aid of hierarchically porous silica as hard template, a facile and general melting perfusion and mesopore-confined pyrolysis method was reported to prepare single-atomic Fe/N–S-doped carbon catalyst(FeNx/NC-S) with hierarchically porous structure and well-defined morphology. The FeNx/NC-S exhibited excellent ORR activity with a half-wave potential(E_(1/2)) of 0.92 V, and a lower overpotential of 320 mV at a current density of 10 mA cm^(-2)for OER under alkaline condition. The remarkable electrocatalysis performance can be attributed to the hierarchically porous carbon nanospheres with S doping and high content of Fe-Nx sites(up to 3.7 wt% of Fe), resulting from the nano-confinement effect of the hierarchically porous silica spheres(NKM-5) during the pyrolysis process. The rechargeable Zn-air battery with FeNx/NC-S as a cathode catalyst demonstrated a superior power density of 194.5 mW cm-2charge–discharge stability. This work highlights a new avenue to design advanced SACs for efficient sustainable energy storage and conversion.
基金Item Sponsored by National Natural Science Foundation of China(51144010)
文摘Phosphorus removal from oolitic high-phosphorus hematite using direct reduction followed by melting sep aration was investigated. At the direct reduction stage, highly volatile wood char was prepared by carbonizing jujube wood at 673 K for 2 h and was used as reducing agent. The results of the direct reduction tests show that at a tem- perature of 1373 K, a char mixing ratio of 0.8, and a reduction time of 10-25 min, the briquettes reached a metal- lization degree of 80% -84% and a residual carbon content of 0.13 -1.98 mass%. Phosphorus remained in the gangue as calcium phosphate after reduction. The results of the melting separation tests show that residual carbon in reduced briquette negatively affects the phosphorus content (W[p]) in hot metal. When the reduced briquettes ob- tained under the aforementioned conditions were used for melting separation, hot metal suitable for basic oxygen steelmaking (w[p]〈0.4 mass%) could not be obtained from metallic briquettes with a residual carbon content more than 1.0 mass~. In contrast, it could be obtained from metallic briquettes with residual carbon content less than 0.35 mass% by mixing with 2%-4% Na2CO3.