Kisspeptin is essential for activation of the hypothalamo-pituitary-gonadal axis. In this study, we established gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. Rats were injected wit...Kisspeptin is essential for activation of the hypothalamo-pituitary-gonadal axis. In this study, we established gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. Rats were injected with 1, 10, or 100 pM kisspeptin-10, a peptide derived from full-length kisspeptin, into the arcuate nucleus and medial preoptic area, and with the kJsspeptJn antagonist peptJde 234 into the lateral cerebral ventricle. The results of immunohistochemical staining revealed that pulsatile luteinizing hormone secretion was suppressed after injection of antagonist peptide 234 into the lateral cerebral ventricle, and a significant increase in luteinizing hormone level was observed after kisspeptin-10 injection into the arcuate nucleus and medial preoptic area. The results of an enzyme-linked immunosorbent assay showed that luteinizing hormone levels during the first hour of kisspeptin-10 infusion into the arcuate nucleus were significantly greater in the 100 pM kisspeptin-10 group than in the 10 pM kisspeptin-10 group. These findings indicate that kisspeptin directly promotes gonadotropin-releasing hormone secretion and luteinizing hormone release in gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. The arcuate nucleus is a key component of the kisspeptin-G protein-coupled receptor 54 signaling pathway underlying regulating luteinizing hormone pulse secretion.展开更多
Several studies showed that sex hormone receptors are in close relationship with classical neurotransmitter neurons especially catecholaminergic(CA) neurons. There are many gonadotrophin releasing hormone (GnRH) neuro...Several studies showed that sex hormone receptors are in close relationship with classical neurotransmitter neurons especially catecholaminergic(CA) neurons. There are many gonadotrophin releasing hormone (GnRH) neurons in hypothalamus and the medial preoptic area (MPO). Electrical stimulation of MPO can cause a rise in secretion展开更多
In the structure of brain the medial preoptic area (MPO) and ventromedial nucleus of hypothalamus (VMN)are the two parts where the estrogen receptors concentrate but have opposite effects on sexual behavior. Recently ...In the structure of brain the medial preoptic area (MPO) and ventromedial nucleus of hypothalamus (VMN)are the two parts where the estrogen receptors concentrate but have opposite effects on sexual behavior. Recently estrogen receptors have been known to be located in the locus coeruleus(LC), where noradrenergic(NE) fibres terminate in the hypothalamus arising from cell bodies. The discharge rate of NE-ergic neurons in LC can be increased by electrical stimulation of MPO in a female rat at estrus stage, and decreased at diestrus stage. These studies help us to infer that VMN might have some modulation influence on NE-ergic neurons in LC. In order to study the pattern activities展开更多
In mammals, gonadal function is controlled by the activity of hypothalamic gonadotropin-releasing hormone neurons, which control the secretion of adenohypophyseal and gonadal hormones. However, there are a number of u...In mammals, gonadal function is controlled by the activity of hypothalamic gonadotropin-releasing hormone neurons, which control the secretion of adenohypophyseal and gonadal hormones. However, there are a number of unanswered questions in relation to gonadal function. It is currently unknown how erotogenic stimulation of the genitals influences the subpopulation of hypothalamic medial preoptic area neurons, antidromically identified as projecting to the median eminence at different periods of the estrous cycle. Additionally, the distinctiveness of hypothalamic medial preoptic area neurons, with respect to methods of feedback control by exogenous hormones, is also unknown. In this study, spontaneous discharges from individual neurons encountered within the medial preoptic area, gono-like neurons, were recorded extracellularly using glass microelectrodes. To confirm the cellular and histochemical properties of the recording units, antidromic stimulation was performed using a side-by-side bipolar stimulating electrode placed into the median eminence, alongside microiontophoretic injections of the conventional tracer, horseradish peroxidase. In addition, further immunohistochemical analyses were performed. Results showed that elevated gono-neuron activity was accompanied by increased background activity and greater responses to erotogenic stimuli during estrus. Application of clitoral traction stimulation resulted in increased activation of the gono-like neurons. This neuronal activity was noticeably inhibited by β-estradiol administration. Immunohistochemical analyses revealed the presence of gonadotropin-releasing hormone-reactive protein in hypothalamic cells in which electrophysiological recordings were taken. Thus, medial preoptic area neurons represent the subset of hypothalamic gonadotropin-releasing hormone neurons described from brain slices in vitro, and might serve as a useful physiological model to form the basis of future in vivo studies.展开更多
文摘Kisspeptin is essential for activation of the hypothalamo-pituitary-gonadal axis. In this study, we established gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. Rats were injected with 1, 10, or 100 pM kisspeptin-10, a peptide derived from full-length kisspeptin, into the arcuate nucleus and medial preoptic area, and with the kJsspeptJn antagonist peptJde 234 into the lateral cerebral ventricle. The results of immunohistochemical staining revealed that pulsatile luteinizing hormone secretion was suppressed after injection of antagonist peptide 234 into the lateral cerebral ventricle, and a significant increase in luteinizing hormone level was observed after kisspeptin-10 injection into the arcuate nucleus and medial preoptic area. The results of an enzyme-linked immunosorbent assay showed that luteinizing hormone levels during the first hour of kisspeptin-10 infusion into the arcuate nucleus were significantly greater in the 100 pM kisspeptin-10 group than in the 10 pM kisspeptin-10 group. These findings indicate that kisspeptin directly promotes gonadotropin-releasing hormone secretion and luteinizing hormone release in gonadotropin-releasing hormone/enhanced green fluorescent protein transgenic rats. The arcuate nucleus is a key component of the kisspeptin-G protein-coupled receptor 54 signaling pathway underlying regulating luteinizing hormone pulse secretion.
文摘Several studies showed that sex hormone receptors are in close relationship with classical neurotransmitter neurons especially catecholaminergic(CA) neurons. There are many gonadotrophin releasing hormone (GnRH) neurons in hypothalamus and the medial preoptic area (MPO). Electrical stimulation of MPO can cause a rise in secretion
文摘In the structure of brain the medial preoptic area (MPO) and ventromedial nucleus of hypothalamus (VMN)are the two parts where the estrogen receptors concentrate but have opposite effects on sexual behavior. Recently estrogen receptors have been known to be located in the locus coeruleus(LC), where noradrenergic(NE) fibres terminate in the hypothalamus arising from cell bodies. The discharge rate of NE-ergic neurons in LC can be increased by electrical stimulation of MPO in a female rat at estrus stage, and decreased at diestrus stage. These studies help us to infer that VMN might have some modulation influence on NE-ergic neurons in LC. In order to study the pattern activities
基金supported by the National Basic Research Program of China (973 Program) No.2011CB505200,2012CB518503grants from the National Natural Science Foundation of China, No.30371804
文摘In mammals, gonadal function is controlled by the activity of hypothalamic gonadotropin-releasing hormone neurons, which control the secretion of adenohypophyseal and gonadal hormones. However, there are a number of unanswered questions in relation to gonadal function. It is currently unknown how erotogenic stimulation of the genitals influences the subpopulation of hypothalamic medial preoptic area neurons, antidromically identified as projecting to the median eminence at different periods of the estrous cycle. Additionally, the distinctiveness of hypothalamic medial preoptic area neurons, with respect to methods of feedback control by exogenous hormones, is also unknown. In this study, spontaneous discharges from individual neurons encountered within the medial preoptic area, gono-like neurons, were recorded extracellularly using glass microelectrodes. To confirm the cellular and histochemical properties of the recording units, antidromic stimulation was performed using a side-by-side bipolar stimulating electrode placed into the median eminence, alongside microiontophoretic injections of the conventional tracer, horseradish peroxidase. In addition, further immunohistochemical analyses were performed. Results showed that elevated gono-neuron activity was accompanied by increased background activity and greater responses to erotogenic stimuli during estrus. Application of clitoral traction stimulation resulted in increased activation of the gono-like neurons. This neuronal activity was noticeably inhibited by β-estradiol administration. Immunohistochemical analyses revealed the presence of gonadotropin-releasing hormone-reactive protein in hypothalamic cells in which electrophysiological recordings were taken. Thus, medial preoptic area neurons represent the subset of hypothalamic gonadotropin-releasing hormone neurons described from brain slices in vitro, and might serve as a useful physiological model to form the basis of future in vivo studies.