In order to improve the bias stability of the micro-electro mechanical system(MEMS) gyroscope and reduce the impact on the bias from environmental temperature,a digital signal processing method is described for impr...In order to improve the bias stability of the micro-electro mechanical system(MEMS) gyroscope and reduce the impact on the bias from environmental temperature,a digital signal processing method is described for improving the accuracy of the drive phase in the gyroscope drive mode.Through the principle of bias signal generation,it can be concluded that the deviation of the drive phase is the main factor affecting the bias stability.To fulfill the purpose of precise drive phase control,a digital signal processing circuit based on the field-programmable gate array(FPGA) with the phase-lock closed-loop control method is described and a demodulation method for phase error suppression is given.Compared with the analog circuit,the bias drift is largely reduced in the new digital circuit and the bias stability is improved from 60 to 19 °/h.The new digital control method can greatly increase the drive phase accuracy,and thus improve the bias stability.展开更多
The dynamics of spiral waves under the influences of periodic mechanical deformation are studied. Here,the mechanical deformation propagating along the medium with phase differences are considered. It is found that we...The dynamics of spiral waves under the influences of periodic mechanical deformation are studied. Here,the mechanical deformation propagating along the medium with phase differences are considered. It is found that weak mechanical deformation may lead to resonant drift of spiral waves. The drift direction and velocity can be changed by the wave length of the deformation. Strong mechanical deformation may result in breakup of spiral waves. The characteristics of breakup are discussed. The critical amplitudes are determined by two factors, i.e. the wave length and frequency of the periodic mechanical deformation. When the wave length of mechanical deformation is comparable to the spiral wave, simulation shows that the critical amplitude is substantially increased. As the frequency of the mechanical deformation is around 1.5 times of the spiral wave, the critical amplitudes are minimal.展开更多
基金The National Natural Science Foundation of China (No.60974116)the Research Fund of Aeronautics Science (No. 20090869007)Specialized Research Fund for the Doctoral Program of Higher Education(No. 200802861063)
文摘In order to improve the bias stability of the micro-electro mechanical system(MEMS) gyroscope and reduce the impact on the bias from environmental temperature,a digital signal processing method is described for improving the accuracy of the drive phase in the gyroscope drive mode.Through the principle of bias signal generation,it can be concluded that the deviation of the drive phase is the main factor affecting the bias stability.To fulfill the purpose of precise drive phase control,a digital signal processing circuit based on the field-programmable gate array(FPGA) with the phase-lock closed-loop control method is described and a demodulation method for phase error suppression is given.Compared with the analog circuit,the bias drift is largely reduced in the new digital circuit and the bias stability is improved from 60 to 19 °/h.The new digital control method can greatly increase the drive phase accuracy,and thus improve the bias stability.
基金Supported by the Natural Science Foundation of Zhejiang Province under Grant Nos.LQ14A050003 and LR17A050001the National Natural Science Foundation of China under Grant Nos.11674080 and 11674379
文摘The dynamics of spiral waves under the influences of periodic mechanical deformation are studied. Here,the mechanical deformation propagating along the medium with phase differences are considered. It is found that weak mechanical deformation may lead to resonant drift of spiral waves. The drift direction and velocity can be changed by the wave length of the deformation. Strong mechanical deformation may result in breakup of spiral waves. The characteristics of breakup are discussed. The critical amplitudes are determined by two factors, i.e. the wave length and frequency of the periodic mechanical deformation. When the wave length of mechanical deformation is comparable to the spiral wave, simulation shows that the critical amplitude is substantially increased. As the frequency of the mechanical deformation is around 1.5 times of the spiral wave, the critical amplitudes are minimal.