The Maclaurin symmetric mean(MSM)operator exhibits a desirable characteristic by effectively capturing the correlations among multiple input parameters,and it serves as an extension of certain existing aggregation ope...The Maclaurin symmetric mean(MSM)operator exhibits a desirable characteristic by effectively capturing the correlations among multiple input parameters,and it serves as an extension of certain existing aggregation operators through adjustments to the parameter k.The hesitant q-rung orthopair set(Hq-ROFSs)can serve as an extension of the existing orthopair fuzzy sets,which provides decision makers more freedom in describing their true opinions.The objective of this paper is to present an MSM operator to aggregate hesitant q-rung orthopair numbers and solve the multiple attribute decision making(MADM)problems in which the attribute values take the form of hesitant q-rung orthopair fuzzy sets(H-qROFSs).Firstly,the definition of H-qROFSs and some operational laws of H-qROFSs are proposed.Then we develop a family of hesitant q-rung orthopair fuzzy maclaurin symmetric mean aggregation operators,such as the hesitant q-rung orthopair fuzzy maclaurin symmetric mean(Hq-ROFMSM)operator,the hesitant q-rung orthopair fuzzy weighted maclaurin symmetric mean(Hq-ROFWMSM)operator,the hesitant q-rung orthopair fuzzy dual maclaurin symmetric mean(Hq-ROFDMSM)operator,the hesitant q-rung orthopair fuzzy weighted dual maclaurin symmetric mean(Hq-ROFWDMSM)operator.And the properties and special cases of these proposed operators are studied.Furthermore,an approach based on the Hq-ROFWMSM operator is proposed for multiple attribute decision making problems under hesitant q-rung orthopair fuzzy environment.Finally,a numerical example and comparative analysis is given to illustrate the application of the proposed approach.展开更多
The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms.The HR gradient operator provides a viable framework and has found a number of applications.However,the ap...The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms.The HR gradient operator provides a viable framework and has found a number of applications.However,the applications so far have been limited to mainly real-valued quaternion functions and linear quaternionvalued functions.To generalize the operator to nonlinear quaternion functions,we define a restricted version of the HR operator,which comes in two versions,the left and the right ones.We then present a detailed analysis of the properties of the operators,including several different product rules and chain rules.Using the new rules,we derive explicit expressions for the derivatives of a class of regular nonlinear quaternion-valued functions,and prove that the restricted HR gradients are consistent with the gradients in the real domain.As an application,the derivation of the least mean square algorithm and a nonlinear adaptive algorithm is provided.Simulation results based on vector sensor arrays are presented as an example to demonstrate the effectiveness of the quaternion-valued signal model and the derived signal processing algorithm.展开更多
Complex equipment refers to special equipment that differs from general equipment.The collaborative development work of complex equipment in the military-civilian integration context involves numerous suppliers.We con...Complex equipment refers to special equipment that differs from general equipment.The collaborative development work of complex equipment in the military-civilian integration context involves numerous suppliers.We consider a two-tier supply network composed of different suppliers that participate in the development work to assemble complex equipment that cooperate with a main-manufacturer regarding spare parts.However,in terms of spare parts,a substitution relationship exists in assembly work for complex equipment.Hence,selecting a suitable supplier from the matching process between suppliers and spare parts under a military-civilian integration background is essential.This study considers three main analyses to obtain a suitable supplier for the development work of complex equipment.First,we construct a two-stage model to acquire the necessary evaluation dimension for subsequent processes.Second,we examine the evaluated attributes for the matching process based on entropy-group-DEMATEL analysis.Third,we perform information aggregation for the uncertain preference information between spare parts and suppliers using a Bonferroni mean operator.Finally,an illustrative example is presented to demonstrate the whole efficiency.Through the aforementioned analysis,we can select a suitable supplier that could participate in complex equipment military-civilian collaborative development work.展开更多
In view of the environment competencies,selecting the optimal green supplier is one of the crucial issues for enterprises,and multi-criteria decision-making(MCDM)methodologies can more easily solve this green supplier...In view of the environment competencies,selecting the optimal green supplier is one of the crucial issues for enterprises,and multi-criteria decision-making(MCDM)methodologies can more easily solve this green supplier selection(GSS)problem.In addition,prioritized aggregation(PA)operator can focus on the prioritization relationship over the criteria,Choquet integral(CI)operator can fully take account of the importance of criteria and the interactions among them,and Bonferroni mean(BM)operator can capture the interrelationships of criteria.However,most existing researches cannot simultaneously consider the interactions,interrelationships and prioritizations over the criteria,which are involved in the GSS process.Moreover,the interval type-2 fuzzy set(IT2FS)is a more effective tool to represent the fuzziness.Therefore,based on the advantages of PA,CI,BM and IT2FS,in this paper,the interval type-2 fuzzy prioritized Choquet normalized weighted BM operators with fuzzy measure and generalized prioritized measure are proposed,and some properties are discussed.Then,a novel MCDM approach for GSS based upon the presented operators is developed,and detailed decision steps are given.Finally,the applicability and practicability of the proposed methodology are demonstrated by its application in the shared-bike GSS and by comparisons with other methods.The advantages of the proposed method are that it can consider interactions,interrelationships and prioritizations over the criteria simultaneously.展开更多
We get optimal lower bounds for the eigenvalues of the Dirac-Witten operator of compact(with or without boundary) spacelike hypersurfaces of Lorentian manifold satisfying certain conditions,just in terms of the mean c...We get optimal lower bounds for the eigenvalues of the Dirac-Witten operator of compact(with or without boundary) spacelike hypersurfaces of Lorentian manifold satisfying certain conditions,just in terms of the mean curvature and the scalar curvature and the spinor energy-momentum tensor. In the limiting case,the spacelike hypersurface is either maximal and Einstein manifold with positive scalar curvature or Ricci-flat manifold with nonzero constant mean curvature.展开更多
For strictly positive operators A and B, and for x ∈ [0,1] and r ∈[-1,1], we investigate the operator power mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 If r = O, this is reduced to the geometric operator m...For strictly positive operators A and B, and for x ∈ [0,1] and r ∈[-1,1], we investigate the operator power mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 If r = O, this is reduced to the geometric operator mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 Since A #0,r B = A and A #l,r B = B, weregard A#t,rB as apath combining A and B.Our aim is to show the essential properties of St,r (AIB). The Tsallis relative operator entropy by Yanagi, Kuriyama and Furuichi can also be expanded, and by using this, we can give an expanded operator valued a-divergence and obtain its properties.展开更多
We formulate a class of functionals in space forms such that its critical points include the r-minimal hyper-surface and the minimal hyper-surface as special cases. We obtain the algebraic, differential and variationa...We formulate a class of functionals in space forms such that its critical points include the r-minimal hyper-surface and the minimal hyper-surface as special cases. We obtain the algebraic, differential and variational characteristics of the critical surfaces determined by the critical points. We prove the Simons' type nonexistence theorem which indicates that in the unit sphere, there exists no stable critical surfaces, and the Alexandrov's type existence theorem which indicates that in Euclidean space, the sphere is the only stable critical surfaces.展开更多
In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle...In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle uncertain information,Fermatean fuzzy sets have recently been used to solve the multi-attribute decision-making(MADM)problems.This paper proposes a Fermatean hesitant fuzzy information aggregation method to address the problem of fusion where the membership,non-membership,and priority are considered simultaneously.Combining the Fermatean hesitant fuzzy sets with Heronian Mean operators,this paper proposes the Fermatean hesitant fuzzy Heronian mean(FHFHM)operator and the Fermatean hesitant fuzzyweighted Heronian mean(FHFWHM)operator.Then,considering the priority relationship between attributes is often easier to obtain than the weight of attributes,this paper defines a new Fermatean hesitant fuzzy prioritized Heronian mean operator(FHFPHM),and discusses its elegant properties such as idempotency,boundedness and monotonicity in detail.Later,for problems with unknown weights and the Fermatean hesitant fuzzy information,aMADM approach based on prioritized attributes is proposed,which can effectively depict the correlation between attributes and avoid the influence of subjective factors on the results.Finally,a numerical example of multi-sensor electronic surveillance is applied to verify the feasibility and validity of the method proposed in this paper.展开更多
We give a new characterization ofq-uniform PL-convexity of complex Banach space by using the existence of a kind of functions with two variables and then prove a sharp weak (1, 1)-type inequality for analytic martinga...We give a new characterization ofq-uniform PL-convexity of complex Banach space by using the existence of a kind of functions with two variables and then prove a sharp weak (1, 1)-type inequality for analytic martingales with values in the Banach space.展开更多
With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matchi...With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matching perspective,for it not only satisfies natural development of smart complex equipment,it is also a good implementation of equipment project in central-private enterprises integration context.In in this paper,we carry out two parts of research,one is evaluation attributes based on comprehensive analysis,and the other is matching process between key suppliers and core components based on the matching attribute.In practical analysis process,we employ comprehensive evaluated analysis methods to acquire relevant attributes for the matching process that follows.In the analysis process,we adopt entropy-maximum deviation method(MDM)-decision-making trial and evaluation laboratory(DEMATEL)-technique for order preference by similarity to an ideal solution(TOPSIS)to obtain a comprehensive analysis.The entropy-MDM is applied to get weight value,DEMATEL is utilized to obtain internal relations,and TOPSIS is adopted to get ideal evaluated solution.We consider aggregating two types of evaluation information according to similarities of smart complex equipment based on the combination between geometric mean and arithmetic mean.Moreover,based on the aforementioned attributes and generalized power Heronian mean operator,we aggregate preference information to acquire relevant satisfaction degree,then combine the constructed matching model to get suitable key supplier.Through comprehensive analysis of selecting suitable suppliers,we know that two-sided matching and information aggregation can provide more research perspectives for smart complex equipment.Through analysis for relevant factors,we find that leading role and service level are also significant for the smart complex equipment development process.展开更多
A class of fractional stochastic neutral functional differential equation is analyzed in this paper.With the utilization of the fractional calculations,semigroup theory,fixed point technique and stochastic analysis th...A class of fractional stochastic neutral functional differential equation is analyzed in this paper.With the utilization of the fractional calculations,semigroup theory,fixed point technique and stochastic analysis theory,a sufficient condition of the existence for p-mean almost periodic solution is obtained,which are supported by two examples.展开更多
To shed some light on the John-Nirenberg space,the authors of this article introduce the John-Nirenberg-Q space via congruent cubes,JNQp,qα(Rn),which,when p=∞and q=2,coincides with the space Qα(Rn)introduced by Ess...To shed some light on the John-Nirenberg space,the authors of this article introduce the John-Nirenberg-Q space via congruent cubes,JNQp,qα(Rn),which,when p=∞and q=2,coincides with the space Qα(Rn)introduced by Essen,Janson,Peng and Xiao in[Indiana Univ Math J,2000,49(2):575-615].Moreover,the authors show that,for some particular indices,JNQp,qα(Rn)coincides with the congruent John-Nirenberg space,or that the(fractional)Sobolev space is continuously embedded into JNQp,qα(Rn).Furthermore,the authors characterize JNQp,qα(Rn)via mean oscillations,and then use this characterization to study the dyadic counterparts.Also,the authors obtain some properties of composition operators on such spaces.The main novelties of this article are twofold:establishing a general equivalence principle for a kind of’almost increasing’set function that is here introduced,and using the fine geometrical properties of dyadic cubes to properly classify any collection of cubes with pairwise disjoint interiors and equal edge length.展开更多
基金Supported by the Key Project of Humanities and Social Research Science Institute of Chongqing Municipal Education Commission(22SKGH432,22SKGH428)2023 Chongqing Education Commission Humanities and Social Sciences Research General Project(23SKGH353)Science and Technology Research Project of Chongqing Education Commission(KJQN202101524)。
文摘The Maclaurin symmetric mean(MSM)operator exhibits a desirable characteristic by effectively capturing the correlations among multiple input parameters,and it serves as an extension of certain existing aggregation operators through adjustments to the parameter k.The hesitant q-rung orthopair set(Hq-ROFSs)can serve as an extension of the existing orthopair fuzzy sets,which provides decision makers more freedom in describing their true opinions.The objective of this paper is to present an MSM operator to aggregate hesitant q-rung orthopair numbers and solve the multiple attribute decision making(MADM)problems in which the attribute values take the form of hesitant q-rung orthopair fuzzy sets(H-qROFSs).Firstly,the definition of H-qROFSs and some operational laws of H-qROFSs are proposed.Then we develop a family of hesitant q-rung orthopair fuzzy maclaurin symmetric mean aggregation operators,such as the hesitant q-rung orthopair fuzzy maclaurin symmetric mean(Hq-ROFMSM)operator,the hesitant q-rung orthopair fuzzy weighted maclaurin symmetric mean(Hq-ROFWMSM)operator,the hesitant q-rung orthopair fuzzy dual maclaurin symmetric mean(Hq-ROFDMSM)operator,the hesitant q-rung orthopair fuzzy weighted dual maclaurin symmetric mean(Hq-ROFWDMSM)operator.And the properties and special cases of these proposed operators are studied.Furthermore,an approach based on the Hq-ROFWMSM operator is proposed for multiple attribute decision making problems under hesitant q-rung orthopair fuzzy environment.Finally,a numerical example and comparative analysis is given to illustrate the application of the proposed approach.
文摘The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms.The HR gradient operator provides a viable framework and has found a number of applications.However,the applications so far have been limited to mainly real-valued quaternion functions and linear quaternionvalued functions.To generalize the operator to nonlinear quaternion functions,we define a restricted version of the HR operator,which comes in two versions,the left and the right ones.We then present a detailed analysis of the properties of the operators,including several different product rules and chain rules.Using the new rules,we derive explicit expressions for the derivatives of a class of regular nonlinear quaternion-valued functions,and prove that the restricted HR gradients are consistent with the gradients in the real domain.As an application,the derivation of the least mean square algorithm and a nonlinear adaptive algorithm is provided.Simulation results based on vector sensor arrays are presented as an example to demonstrate the effectiveness of the quaternion-valued signal model and the derived signal processing algorithm.
基金supported by the Philosophy in Colleges and Universities of Anhui Provincial Department of Education(No.2022AH050635,No.2023AH050041).
文摘Complex equipment refers to special equipment that differs from general equipment.The collaborative development work of complex equipment in the military-civilian integration context involves numerous suppliers.We consider a two-tier supply network composed of different suppliers that participate in the development work to assemble complex equipment that cooperate with a main-manufacturer regarding spare parts.However,in terms of spare parts,a substitution relationship exists in assembly work for complex equipment.Hence,selecting a suitable supplier from the matching process between suppliers and spare parts under a military-civilian integration background is essential.This study considers three main analyses to obtain a suitable supplier for the development work of complex equipment.First,we construct a two-stage model to acquire the necessary evaluation dimension for subsequent processes.Second,we examine the evaluated attributes for the matching process based on entropy-group-DEMATEL analysis.Third,we perform information aggregation for the uncertain preference information between spare parts and suppliers using a Bonferroni mean operator.Finally,an illustrative example is presented to demonstrate the whole efficiency.Through the aforementioned analysis,we can select a suitable supplier that could participate in complex equipment military-civilian collaborative development work.
基金supported by the National Natural Science Foundation of China(71771140)Project of Cultural Masters and“the Four Kinds of a Batch”Talents,the Special Funds of Taishan Scholars Project of Shandong Province(ts201511045)the Major Bidding Projects of National Social Science Fund of China(19ZDA080)。
文摘In view of the environment competencies,selecting the optimal green supplier is one of the crucial issues for enterprises,and multi-criteria decision-making(MCDM)methodologies can more easily solve this green supplier selection(GSS)problem.In addition,prioritized aggregation(PA)operator can focus on the prioritization relationship over the criteria,Choquet integral(CI)operator can fully take account of the importance of criteria and the interactions among them,and Bonferroni mean(BM)operator can capture the interrelationships of criteria.However,most existing researches cannot simultaneously consider the interactions,interrelationships and prioritizations over the criteria,which are involved in the GSS process.Moreover,the interval type-2 fuzzy set(IT2FS)is a more effective tool to represent the fuzziness.Therefore,based on the advantages of PA,CI,BM and IT2FS,in this paper,the interval type-2 fuzzy prioritized Choquet normalized weighted BM operators with fuzzy measure and generalized prioritized measure are proposed,and some properties are discussed.Then,a novel MCDM approach for GSS based upon the presented operators is developed,and detailed decision steps are given.Finally,the applicability and practicability of the proposed methodology are demonstrated by its application in the shared-bike GSS and by comparisons with other methods.The advantages of the proposed method are that it can consider interactions,interrelationships and prioritizations over the criteria simultaneously.
文摘We get optimal lower bounds for the eigenvalues of the Dirac-Witten operator of compact(with or without boundary) spacelike hypersurfaces of Lorentian manifold satisfying certain conditions,just in terms of the mean curvature and the scalar curvature and the spinor energy-momentum tensor. In the limiting case,the spacelike hypersurface is either maximal and Einstein manifold with positive scalar curvature or Ricci-flat manifold with nonzero constant mean curvature.
文摘For strictly positive operators A and B, and for x ∈ [0,1] and r ∈[-1,1], we investigate the operator power mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 If r = O, this is reduced to the geometric operator mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 Since A #0,r B = A and A #l,r B = B, weregard A#t,rB as apath combining A and B.Our aim is to show the essential properties of St,r (AIB). The Tsallis relative operator entropy by Yanagi, Kuriyama and Furuichi can also be expanded, and by using this, we can give an expanded operator valued a-divergence and obtain its properties.
基金supported by National Natural Science Foundation of China (Grant No.10871061)
文摘We formulate a class of functionals in space forms such that its critical points include the r-minimal hyper-surface and the minimal hyper-surface as special cases. We obtain the algebraic, differential and variational characteristics of the critical surfaces determined by the critical points. We prove the Simons' type nonexistence theorem which indicates that in the unit sphere, there exists no stable critical surfaces, and the Alexandrov's type existence theorem which indicates that in Euclidean space, the sphere is the only stable critical surfaces.
文摘In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle uncertain information,Fermatean fuzzy sets have recently been used to solve the multi-attribute decision-making(MADM)problems.This paper proposes a Fermatean hesitant fuzzy information aggregation method to address the problem of fusion where the membership,non-membership,and priority are considered simultaneously.Combining the Fermatean hesitant fuzzy sets with Heronian Mean operators,this paper proposes the Fermatean hesitant fuzzy Heronian mean(FHFHM)operator and the Fermatean hesitant fuzzyweighted Heronian mean(FHFWHM)operator.Then,considering the priority relationship between attributes is often easier to obtain than the weight of attributes,this paper defines a new Fermatean hesitant fuzzy prioritized Heronian mean operator(FHFPHM),and discusses its elegant properties such as idempotency,boundedness and monotonicity in detail.Later,for problems with unknown weights and the Fermatean hesitant fuzzy information,aMADM approach based on prioritized attributes is proposed,which can effectively depict the correlation between attributes and avoid the influence of subjective factors on the results.Finally,a numerical example of multi-sensor electronic surveillance is applied to verify the feasibility and validity of the method proposed in this paper.
文摘We give a new characterization ofq-uniform PL-convexity of complex Banach space by using the existence of a kind of functions with two variables and then prove a sharp weak (1, 1)-type inequality for analytic martingales with values in the Banach space.
文摘With the development of central-private enterprises integration,selecting suitable key suppliers are able to provide core components for smart complex equipment.We consider selecting suitable key suppliers from matching perspective,for it not only satisfies natural development of smart complex equipment,it is also a good implementation of equipment project in central-private enterprises integration context.In in this paper,we carry out two parts of research,one is evaluation attributes based on comprehensive analysis,and the other is matching process between key suppliers and core components based on the matching attribute.In practical analysis process,we employ comprehensive evaluated analysis methods to acquire relevant attributes for the matching process that follows.In the analysis process,we adopt entropy-maximum deviation method(MDM)-decision-making trial and evaluation laboratory(DEMATEL)-technique for order preference by similarity to an ideal solution(TOPSIS)to obtain a comprehensive analysis.The entropy-MDM is applied to get weight value,DEMATEL is utilized to obtain internal relations,and TOPSIS is adopted to get ideal evaluated solution.We consider aggregating two types of evaluation information according to similarities of smart complex equipment based on the combination between geometric mean and arithmetic mean.Moreover,based on the aforementioned attributes and generalized power Heronian mean operator,we aggregate preference information to acquire relevant satisfaction degree,then combine the constructed matching model to get suitable key supplier.Through comprehensive analysis of selecting suitable suppliers,we know that two-sided matching and information aggregation can provide more research perspectives for smart complex equipment.Through analysis for relevant factors,we find that leading role and service level are also significant for the smart complex equipment development process.
基金by the National Natural Science Foundation of China(Nos.11871162,11661050,11561059).
文摘A class of fractional stochastic neutral functional differential equation is analyzed in this paper.With the utilization of the fractional calculations,semigroup theory,fixed point technique and stochastic analysis theory,a sufficient condition of the existence for p-mean almost periodic solution is obtained,which are supported by two examples.
基金partially supported by the National Natural Science Foundation of China(12122102 and 11871100)the National Key Research and Development Program of China(2020YFA0712900)。
文摘To shed some light on the John-Nirenberg space,the authors of this article introduce the John-Nirenberg-Q space via congruent cubes,JNQp,qα(Rn),which,when p=∞and q=2,coincides with the space Qα(Rn)introduced by Essen,Janson,Peng and Xiao in[Indiana Univ Math J,2000,49(2):575-615].Moreover,the authors show that,for some particular indices,JNQp,qα(Rn)coincides with the congruent John-Nirenberg space,or that the(fractional)Sobolev space is continuously embedded into JNQp,qα(Rn).Furthermore,the authors characterize JNQp,qα(Rn)via mean oscillations,and then use this characterization to study the dyadic counterparts.Also,the authors obtain some properties of composition operators on such spaces.The main novelties of this article are twofold:establishing a general equivalence principle for a kind of’almost increasing’set function that is here introduced,and using the fine geometrical properties of dyadic cubes to properly classify any collection of cubes with pairwise disjoint interiors and equal edge length.