期刊文献+

Expanded Relative Operator Entropies and Operator Valued α-Divergence

Expanded Relative Operator Entropies and Operator Valued α-Divergence
下载PDF
导出
摘要 For strictly positive operators A and B, and for x ∈ [0,1] and r ∈[-1,1], we investigate the operator power mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 If r = O, this is reduced to the geometric operator mean A#x,rB=A1/2{(1-x)/+x(a-1*2BA-1/2)r}1/rA1/2 Since A #0,r B = A and A #l,r B = B, weregard A#t,rB as apath combining A and B.Our aim is to show the essential properties of St,r (AIB). The Tsallis relative operator entropy by Yanagi, Kuriyama and Furuichi can also be expanded, and by using this, we can give an expanded operator valued a-divergence and obtain its properties.
出处 《Journal of Mathematics and System Science》 2015年第6期215-224,共10页 数学和系统科学(英文版)
关键词 Operator power mean relative operator entropy Tsallis relative operator entropy operator valued a-divergence 正算子 相对熵 本质特性 幂平均 s算子 Rb 几何 ST
  • 相关文献

参考文献21

  • 1Amari, Differential Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, 28 (1985). 被引量:1
  • 2L. Borland, A. R. Plastino and C. Tsallis, Information gain within nonextensive, thermostatistics, J. Math. Phys, 39 (1998), 6490-6501, and its Erratum, 40 (1999), 2196. 被引量:1
  • 3J. I. Fujii, On the relative operator entropy (in Japanese), RIMS Kokyuroku, 903 (1995),49-56. 被引量:1
  • 4J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory, Math. Japon., 34 (1989), 341-348. 被引量:1
  • 5J. I. Fujii and E. Kamei, Interpolational paths and their derivatives, Math. Japon., 39 (1994), 557-560. 被引量:1
  • 6J. I. Fujii and E. Kamei, Path of Bregman-Petz operator divergence, Sci. Math. Jpn., 70 (2009), 329-333. 被引量:1
  • 7J. I. Fujii, J. Micic, J. Pecaric and Y. Seo, Comparison of operator mean geodesics, J. Math. Inequal., 2(2008), 287-298. 被引量:1
  • 8J. Fujii, J. MiCic, J. Pecaric and Y. Seo, Recent Development of Mond-Pecaric Method in Operator Inequalities, Monographs in Inequalities 4, Element, Zagreb, (2012). 被引量:1
  • 9Furuta, Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators, Linear Algebra Appl., 381 (2004), 219-235. 被引量:1
  • 10H. Isa, M. Ito, E. Kamei, H. Tohyama and M. Watanabe, Relative Operator Entropy, Operator Divergence and Shannon Inequality, Sci. Math. Jpn., 75 (2012), 289-298. (online: e-2012 (2012), 353-362.). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部