AIM: To determine the therapeutic efficacy of resveratrol on ulcerative colitis (UC) and its underlying mechanisms. METHODS: The mouse UC model was developed using 5% dextran sulfate sodium. Mice were randomly divided...AIM: To determine the therapeutic efficacy of resveratrol on ulcerative colitis (UC) and its underlying mechanisms. METHODS: The mouse UC model was developed using 5% dextran sulfate sodium. Mice were randomly divided into four groups: normal control, UC model group, resveratrol low-dose group (RLD; 50 mg/kg per day), and resveratrol high-dose group (RHD; 100 mg/kg per day). RESULTS: The results showed that RLD regulates Treg/Th17 balance mainly through reducing the number of Th17 cells, whereas RHD regulates Treg/Th17 balance through both downregulating the number of Th17 cells and upregulating the number of Treg cells. Resveratrol can also regulate the level of plasma and intestinal mucosal cytokines including interleukin (IL)-10, transforming growth factor-beta 1, IL-6, and IL-17. The expressions of hypoxia inducible factor (HIF)-1 alpha, mammalian target of rapamycin (mTOR), and signal transducer and activator of transcription 3 were significantly decreased in the intestinal tissues of mice treated with resveratrol. CONCLUSION: The therapeutic efficacy of resveratrol in UC is dose dependent and closely associated with the regulation of Treg/Th17 balance and the HIF-1 alpha/mTOR signaling pathway.展开更多
HRONIC myeloid leukemia (CML) is characterized by the presence of the BCR/ABL fusion gene, which is the result of a reciprocal translo cation between chromosomes 9 and 22, calledPhiladelphia (Ph) chromosome. Imati...HRONIC myeloid leukemia (CML) is characterized by the presence of the BCR/ABL fusion gene, which is the result of a reciprocal translo cation between chromosomes 9 and 22, calledPhiladelphia (Ph) chromosome. Imatinib mesylate (imatinib), a specific small molecular inhibitor of BCR/ABL, could improve the prognosis of CML and is now the standard drug applied in all phases of this disease} Despite the efficacy of imatinib, the development of resistance and the persistence of minimal residual disease have seriously impaired the efficiency of this medicine. Resistance may develop through several different mechanisms, such as mutations in the Abl kinase domain, BCR/ABL overexpression, or compensatory phosphatidylinositol 3 kinase (PI3K)/Akt/ mammalian target of rapamycin (mTOR) activation.2,3 Rapamycin, with mTOR as a potential therapeutic target, has been studied in patients with hematologic malignancies. Here we report a case of refractory CML myeloid blast crisissuccessfully treated by the combination of rapamycin and imatinib.展开更多
基金Supported by Outstanding Doctoral Thesis Support Project of Guangdong Province,No.85514045the Technical Research and Development Project of Shenzhen,No.JCYJ20130402092657774the Medical Research Foundation of Guangdong Province,No.B2013347
文摘AIM: To determine the therapeutic efficacy of resveratrol on ulcerative colitis (UC) and its underlying mechanisms. METHODS: The mouse UC model was developed using 5% dextran sulfate sodium. Mice were randomly divided into four groups: normal control, UC model group, resveratrol low-dose group (RLD; 50 mg/kg per day), and resveratrol high-dose group (RHD; 100 mg/kg per day). RESULTS: The results showed that RLD regulates Treg/Th17 balance mainly through reducing the number of Th17 cells, whereas RHD regulates Treg/Th17 balance through both downregulating the number of Th17 cells and upregulating the number of Treg cells. Resveratrol can also regulate the level of plasma and intestinal mucosal cytokines including interleukin (IL)-10, transforming growth factor-beta 1, IL-6, and IL-17. The expressions of hypoxia inducible factor (HIF)-1 alpha, mammalian target of rapamycin (mTOR), and signal transducer and activator of transcription 3 were significantly decreased in the intestinal tissues of mice treated with resveratrol. CONCLUSION: The therapeutic efficacy of resveratrol in UC is dose dependent and closely associated with the regulation of Treg/Th17 balance and the HIF-1 alpha/mTOR signaling pathway.
基金Supported by Key Provincial Talents Program of Jiangsu(H201126)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘HRONIC myeloid leukemia (CML) is characterized by the presence of the BCR/ABL fusion gene, which is the result of a reciprocal translo cation between chromosomes 9 and 22, calledPhiladelphia (Ph) chromosome. Imatinib mesylate (imatinib), a specific small molecular inhibitor of BCR/ABL, could improve the prognosis of CML and is now the standard drug applied in all phases of this disease} Despite the efficacy of imatinib, the development of resistance and the persistence of minimal residual disease have seriously impaired the efficiency of this medicine. Resistance may develop through several different mechanisms, such as mutations in the Abl kinase domain, BCR/ABL overexpression, or compensatory phosphatidylinositol 3 kinase (PI3K)/Akt/ mammalian target of rapamycin (mTOR) activation.2,3 Rapamycin, with mTOR as a potential therapeutic target, has been studied in patients with hematologic malignancies. Here we report a case of refractory CML myeloid blast crisissuccessfully treated by the combination of rapamycin and imatinib.