There was elaborated a method for calculating magnetic fields of the Solar System planets. It is based on the quantum theory of electroconductivity of metals and semiconductors. The latter helps to calculate thermoele...There was elaborated a method for calculating magnetic fields of the Solar System planets. It is based on the quantum theory of electroconductivity of metals and semiconductors. The latter helps to calculate thermoelectrical processes, always taking place in the bowels of “hot” planets. Main elements of those processes are planetary temperature gradients, thermo electromotive force and radially directed thermoelectrical currents, which are associated with Seebeck effect. Thermo electromotive force causes directional movement of planetary thermoelectrical currents both in metal cores and other conductive shells of planets. Those currents are big and they generate magnetic fields of proportional intensity. The capacities of the calculation method were tested while finding the reason why the Jupiter magnetic field is such complicated. As a result it was specified that the source of the main magnetic field of a planet is its metal core and the source of an additional magnetic field is the layer of liquid metal hydrogen. There was also found the third source of a local magnetic field of low intensity along the circular zone of the equatorial region. The conclusion that the Jupiter’s main magnetic field has a polarity opposite to the Earth’s one.展开更多
The method of natural orthogonal components (NOC) is used to analyze the earth抯 main magnetic field IGRF 1900—2000, and the NOC model of the field is established. The first step of the analysis is to calculate eigen...The method of natural orthogonal components (NOC) is used to analyze the earth抯 main magnetic field IGRF 1900—2000, and the NOC model of the field is established. The first step of the analysis is to calculate eigen modes of the field from the Gauss coefficients of IGRF 1900—2000. Then the magnetic field for each epoch is expanded in a series at the basic function set constructed by the eigen modes, and the intensity coefficients of the eigen modes are calculated. Test of the convergency and stability of the NOC model shows that the model has very short series and much rapid convergency in comparison with the conventional spherical harmonic models of IGRF. Comparison of the eigen modes obtained from different IGRF model groups indicates that the low-degree eigen modes are rather stable, while the high-degree modes show a relatively large variability. The physical meaning of the eigen modes in the NOC model is discussed, and an interesting relationship is found between the spatial structure of the main field and its secular variation.展开更多
Analysis of the International Geomagnetic Reference Field (IGRF) 1900-2000 showsthat the Earth’s main magnetic field has changed dramatically during the 20th century: its dipole moment has decreased by 6.5% since 190...Analysis of the International Geomagnetic Reference Field (IGRF) 1900-2000 showsthat the Earth’s main magnetic field has changed dramatically during the 20th century: its dipole moment has decreased by 6.5% since 1900, the strengths of its quadrupole and octupole have increased by 95% and 74%, respectively, four major planetary-scale magnetic anomalies on the Earth’s surface have enhanced by 21%-56%, and the magnetic center has shifted 200 km towards the Pacific Ocean. These time-variation features are similar to the behavior before a geomagnetic polarity reversal.展开更多
The design and construction of Beijing Radioactive Ion-beam Facility (BRIF) was started at China Institute of Atomic Energy -CIAE) in 2004. In this project, a 100 MeV high intensity cyclotron, CYCIAE100, is selected a...The design and construction of Beijing Radioactive Ion-beam Facility (BRIF) was started at China Institute of Atomic Energy -CIAE) in 2004. In this project, a 100 MeV high intensity cyclotron, CYCIAE100, is selected as a driving accelerator for radioactive ion beam production. It will provide a proton beam of 75—100 MeV with an intensity of 200—500 μA. The scheme adopted in this design, i.e., stripping the accelerated H-, makes the structure more compact and construction cost much lower. At present, the design for each system has been accomplished. This paper depicts the basic physics design of the machine, including its major structure and parameters, beam dynamics and each relevant system, e.g. basic structure of the main magnet, numerical simulation of the RF resonant cavity, axial injection system, central region, and study on crucial physics problems concerning the extraction and beam lines. The major problems encountered during the design of CYCIAE-100 are also summarized in this paper.展开更多
文摘There was elaborated a method for calculating magnetic fields of the Solar System planets. It is based on the quantum theory of electroconductivity of metals and semiconductors. The latter helps to calculate thermoelectrical processes, always taking place in the bowels of “hot” planets. Main elements of those processes are planetary temperature gradients, thermo electromotive force and radially directed thermoelectrical currents, which are associated with Seebeck effect. Thermo electromotive force causes directional movement of planetary thermoelectrical currents both in metal cores and other conductive shells of planets. Those currents are big and they generate magnetic fields of proportional intensity. The capacities of the calculation method were tested while finding the reason why the Jupiter magnetic field is such complicated. As a result it was specified that the source of the main magnetic field of a planet is its metal core and the source of an additional magnetic field is the layer of liquid metal hydrogen. There was also found the third source of a local magnetic field of low intensity along the circular zone of the equatorial region. The conclusion that the Jupiter’s main magnetic field has a polarity opposite to the Earth’s one.
基金the National Natural Science Foundation of China(Grant Nos.49734140, 49974014).
文摘The method of natural orthogonal components (NOC) is used to analyze the earth抯 main magnetic field IGRF 1900—2000, and the NOC model of the field is established. The first step of the analysis is to calculate eigen modes of the field from the Gauss coefficients of IGRF 1900—2000. Then the magnetic field for each epoch is expanded in a series at the basic function set constructed by the eigen modes, and the intensity coefficients of the eigen modes are calculated. Test of the convergency and stability of the NOC model shows that the model has very short series and much rapid convergency in comparison with the conventional spherical harmonic models of IGRF. Comparison of the eigen modes obtained from different IGRF model groups indicates that the low-degree eigen modes are rather stable, while the high-degree modes show a relatively large variability. The physical meaning of the eigen modes in the NOC model is discussed, and an interesting relationship is found between the spatial structure of the main field and its secular variation.
文摘Analysis of the International Geomagnetic Reference Field (IGRF) 1900-2000 showsthat the Earth’s main magnetic field has changed dramatically during the 20th century: its dipole moment has decreased by 6.5% since 1900, the strengths of its quadrupole and octupole have increased by 95% and 74%, respectively, four major planetary-scale magnetic anomalies on the Earth’s surface have enhanced by 21%-56%, and the magnetic center has shifted 200 km towards the Pacific Ocean. These time-variation features are similar to the behavior before a geomagnetic polarity reversal.
文摘The design and construction of Beijing Radioactive Ion-beam Facility (BRIF) was started at China Institute of Atomic Energy -CIAE) in 2004. In this project, a 100 MeV high intensity cyclotron, CYCIAE100, is selected as a driving accelerator for radioactive ion beam production. It will provide a proton beam of 75—100 MeV with an intensity of 200—500 μA. The scheme adopted in this design, i.e., stripping the accelerated H-, makes the structure more compact and construction cost much lower. At present, the design for each system has been accomplished. This paper depicts the basic physics design of the machine, including its major structure and parameters, beam dynamics and each relevant system, e.g. basic structure of the main magnet, numerical simulation of the RF resonant cavity, axial injection system, central region, and study on crucial physics problems concerning the extraction and beam lines. The major problems encountered during the design of CYCIAE-100 are also summarized in this paper.