Objective:To evaluate the essential oils(EO) composition,antimicrobial and antioxidant power of a local plant,Daucus gracilis(D.gracilis).Methods:The aerial parts of D.gracilis were subjected to hydro distillation by ...Objective:To evaluate the essential oils(EO) composition,antimicrobial and antioxidant power of a local plant,Daucus gracilis(D.gracilis).Methods:The aerial parts of D.gracilis were subjected to hydro distillation by a Clevenger apparatus type to obtain the EO which had been analyzed by gas chromatography and gas chromatography coupled with mass spectrometry,and screened for antimicrobial activity against five bacteria and three fungi by agar diffusion method.The mechanism of action of the EO was determined on the susceptible strains by both of time kill assay and lysis experience.The minimal inhibitory concentrations were determined by agar macrodilution and micro-dilution methods.Anti-oxidative properties of the EO were also studied by free diphenyl-2-picrylhydrazyl radical scavenging and reducing power techniques.Results:The EO yielded 0.68(v/w).The chemical analysis presented two dominant constituents which were the elemicin(35.3%) and the geranyl acetate(26.8%).D.gracilis EO inhibited the growth of Bacillus cereus and Proteus mirabilis significantly with minimal inhibitory concentrations of 17.15 μg/mL by the agar dilution method and57.05 μg/mL and 114.1 μg/mL,respectively by liquid micro-dilution.A remarkable decrease in a survival rate as well as in the absorbance in 260 nm was recorded,which suggested that the cytoplasm membrane was one of the targets of the EO.The EO showed,also,important anti-oxidative effects with an IC50 of 0.002 mg/mL and a dosedependent reducing power.Conclusions:D.gracilis EO showed potent antimicrobial and anti-oxidative activities and had acted on the cytoplasm membrane.These activities could be exploited in the food industry for food preservation.展开更多
In this work three fuel consumption and exhaust emission models,ADVISOR,VT-MICRO and the European Environmental Agency Emission factors,have been used to obtain fuel consumption(FC)and exhaust emissions.These models h...In this work three fuel consumption and exhaust emission models,ADVISOR,VT-MICRO and the European Environmental Agency Emission factors,have been used to obtain fuel consumption(FC)and exhaust emissions.These models have been used at micro-scale,using the two signal treatment methods presented.The manuscript presents:1)a methodology to collect data in real urban driving cycles,2)an estimation of FC and tailpipe emissions using some available models in literature,and 3)a novel analysis of the results based on delivered wheel power.The results include Fuel Consumption(FC),CO_(2),NO_(x) and PM_(10) emissions,which are derived from the three simulators.In the first part of the paper we present a new procedure for incomplete drive cycle data treatment,which is necessary for real drive cycle acquisition in high density cities.Then the models are used to obtain second by second FC and exhaust emissions.Finally,a new methodology named Cycle Analysis by Ordered Power(CAbOP)is presented and used to compare the results.This method consists in the re-ordering of time dependant data,considering the wheel mechanical power domain instead of the standard time domain.This new strategy allows the 5 situations in drive cycles to be clearly visualized:hard breaking zone,slowdowns,idle or stop zone,sustained speed zone and acceleration zone.The complete methodology is applied in two real drive cycles surveyed in Barcelona(Spain)and the results are compared with a standardized WLTC urban cycle.展开更多
New Internet activity is becoming a channel for delivering information Cai Qi found himself unprecedentedly popular in his Internet career just one day after he announced the
Due to the scattered nature of the network,data transmission in a dis-tributed Mobile Ad-hoc Network(MANET)consumes more energy resources(ER)than in a centralized network,resulting in a shorter network lifespan(NL).As...Due to the scattered nature of the network,data transmission in a dis-tributed Mobile Ad-hoc Network(MANET)consumes more energy resources(ER)than in a centralized network,resulting in a shorter network lifespan(NL).As a result,we build an Enhanced Opportunistic Routing(EORP)protocol architecture in order to address the issues raised before.This proposed routing protocol goal is to manage the routing cost by employing power,load,and delay to manage the routing energy consumption based on theflooding of control pack-ets from the target node.According to the goal of the proposed protocol techni-que,it is possible to manage the routing cost by applying power,load,and delay.The proposed technique also manage the routing energy consumption based on theflooding of control packets from the destination node in order to reduce the routing cost.Control packet exchange between the target and all the nodes,on the other hand,is capable of having an influence on the overall efficiency of the system.The EORP protocol and the Multi-channel Cooperative Neighbour Discovery(MCCND)protocol have been designed to detect the cooperative adja-cent nodes for each node in the routing route as part of the routing path discovery process,which occurs during control packet transmission.While control packet transmission is taking place during the routing path discovery process,the EORP protocol and the Multi-channel Cooperative Neighbour Discovery(MCCND)protocol have been designed to detect the cooperative adjacent nodes for each node in the routing.Also included is a simulation of these protocols in order to evaluate their performance across a wide range of packet speeds using Constant Bit Rate(CBR).When the packet rate of the CBR is 20 packets per second,the results reveal that the EORP-MCCND is 0.6 s quicker than the state-of-the-art protocols,according to thefindings.Assuming that the CBR packet rate is 20 packets per second,the EORP-MCCND achieves 0.6 s of End 2 End Delay,0.05 s of Routing Overhead Delay,120 s of Network Lifetime,and 展开更多
For management of power system on the bases of distributed complex network (DCN-network) authors developed a new structure of knowledge base: at macro-nodes of network are located a database and a logical conclusio...For management of power system on the bases of distributed complex network (DCN-network) authors developed a new structure of knowledge base: at macro-nodes of network are located a database and a logical conclusion making machine, and on the arcs are located their connecting properties. Such structure excludes transitions from a logical conclusion making machine to database. It provides opportunity of fast and efficient processing of information, modeling of complex processes etc.展开更多
基金supported by a grant from the Algerian government
文摘Objective:To evaluate the essential oils(EO) composition,antimicrobial and antioxidant power of a local plant,Daucus gracilis(D.gracilis).Methods:The aerial parts of D.gracilis were subjected to hydro distillation by a Clevenger apparatus type to obtain the EO which had been analyzed by gas chromatography and gas chromatography coupled with mass spectrometry,and screened for antimicrobial activity against five bacteria and three fungi by agar diffusion method.The mechanism of action of the EO was determined on the susceptible strains by both of time kill assay and lysis experience.The minimal inhibitory concentrations were determined by agar macrodilution and micro-dilution methods.Anti-oxidative properties of the EO were also studied by free diphenyl-2-picrylhydrazyl radical scavenging and reducing power techniques.Results:The EO yielded 0.68(v/w).The chemical analysis presented two dominant constituents which were the elemicin(35.3%) and the geranyl acetate(26.8%).D.gracilis EO inhibited the growth of Bacillus cereus and Proteus mirabilis significantly with minimal inhibitory concentrations of 17.15 μg/mL by the agar dilution method and57.05 μg/mL and 114.1 μg/mL,respectively by liquid micro-dilution.A remarkable decrease in a survival rate as well as in the absorbance in 260 nm was recorded,which suggested that the cytoplasm membrane was one of the targets of the EO.The EO showed,also,important anti-oxidative effects with an IC50 of 0.002 mg/mL and a dosedependent reducing power.Conclusions:D.gracilis EO showed potent antimicrobial and anti-oxidative activities and had acted on the cytoplasm membrane.These activities could be exploited in the food industry for food preservation.
文摘In this work three fuel consumption and exhaust emission models,ADVISOR,VT-MICRO and the European Environmental Agency Emission factors,have been used to obtain fuel consumption(FC)and exhaust emissions.These models have been used at micro-scale,using the two signal treatment methods presented.The manuscript presents:1)a methodology to collect data in real urban driving cycles,2)an estimation of FC and tailpipe emissions using some available models in literature,and 3)a novel analysis of the results based on delivered wheel power.The results include Fuel Consumption(FC),CO_(2),NO_(x) and PM_(10) emissions,which are derived from the three simulators.In the first part of the paper we present a new procedure for incomplete drive cycle data treatment,which is necessary for real drive cycle acquisition in high density cities.Then the models are used to obtain second by second FC and exhaust emissions.Finally,a new methodology named Cycle Analysis by Ordered Power(CAbOP)is presented and used to compare the results.This method consists in the re-ordering of time dependant data,considering the wheel mechanical power domain instead of the standard time domain.This new strategy allows the 5 situations in drive cycles to be clearly visualized:hard breaking zone,slowdowns,idle or stop zone,sustained speed zone and acceleration zone.The complete methodology is applied in two real drive cycles surveyed in Barcelona(Spain)and the results are compared with a standardized WLTC urban cycle.
文摘New Internet activity is becoming a channel for delivering information Cai Qi found himself unprecedentedly popular in his Internet career just one day after he announced the
文摘Due to the scattered nature of the network,data transmission in a dis-tributed Mobile Ad-hoc Network(MANET)consumes more energy resources(ER)than in a centralized network,resulting in a shorter network lifespan(NL).As a result,we build an Enhanced Opportunistic Routing(EORP)protocol architecture in order to address the issues raised before.This proposed routing protocol goal is to manage the routing cost by employing power,load,and delay to manage the routing energy consumption based on theflooding of control pack-ets from the target node.According to the goal of the proposed protocol techni-que,it is possible to manage the routing cost by applying power,load,and delay.The proposed technique also manage the routing energy consumption based on theflooding of control packets from the destination node in order to reduce the routing cost.Control packet exchange between the target and all the nodes,on the other hand,is capable of having an influence on the overall efficiency of the system.The EORP protocol and the Multi-channel Cooperative Neighbour Discovery(MCCND)protocol have been designed to detect the cooperative adja-cent nodes for each node in the routing route as part of the routing path discovery process,which occurs during control packet transmission.While control packet transmission is taking place during the routing path discovery process,the EORP protocol and the Multi-channel Cooperative Neighbour Discovery(MCCND)protocol have been designed to detect the cooperative adjacent nodes for each node in the routing.Also included is a simulation of these protocols in order to evaluate their performance across a wide range of packet speeds using Constant Bit Rate(CBR).When the packet rate of the CBR is 20 packets per second,the results reveal that the EORP-MCCND is 0.6 s quicker than the state-of-the-art protocols,according to thefindings.Assuming that the CBR packet rate is 20 packets per second,the EORP-MCCND achieves 0.6 s of End 2 End Delay,0.05 s of Routing Overhead Delay,120 s of Network Lifetime,and
文摘For management of power system on the bases of distributed complex network (DCN-network) authors developed a new structure of knowledge base: at macro-nodes of network are located a database and a logical conclusion making machine, and on the arcs are located their connecting properties. Such structure excludes transitions from a logical conclusion making machine to database. It provides opportunity of fast and efficient processing of information, modeling of complex processes etc.