In this paper,a DC-DC multi-port converter is introduced by integrating a super-lift and a buck converter(SLBC).The proposed single-input dual-output(SIDO)converter has conventional positive output voltage super-lift ...In this paper,a DC-DC multi-port converter is introduced by integrating a super-lift and a buck converter(SLBC).The proposed single-input dual-output(SIDO)converter has conventional positive output voltage super-lift advantages while simultaneously generating a step・up voltage by Luo・converter and a step-down voltage by the buck converter.In this structure,without utilizing electromagnetic components to generate a dual output,the ripple in output voltages is kept low.Meanwhile,the introduced SLBC has a simple structure and an appropriate control method providing a wide range of output voltages.Besides,to illustrate the advantages of the proposed SIDO converter,a comparison with other similar configurations is carried out.Also,simulation and experiment results indicate a considerable reduction in conduction losses compared to other SIDO converters in the same situations.The operation accuracy of SLBC is validated by performing several simulations in PSCAD/EMTDC software and testing a 150W prototype in the laboratory.展开更多
In this paper, the design of a proportional integral controller (PIC) plus fuzzy logic controller (FLC) for the negative output elementary super lift Luo converter (NOESLLC) operated in discontinuous conduction mode (...In this paper, the design of a proportional integral controller (PIC) plus fuzzy logic controller (FLC) for the negative output elementary super lift Luo converter (NOESLLC) operated in discontinuous conduction mode (DCM) is presented. In spite of the many benefits viz. the high voltage transfer gain, the high efficiency, and the reduced inductor current and the capacitor voltage ripples, it natured with non-minimum phase. This characteristic makes the control of NOESLLC cumbersome. Any attempt of direct controlling the output voltage may erupt to instability. To overcome this problem, indirect regulation of the output voltage based on the two-loop controller is devised. The savvy in the inductor current control improves the dynamic response of the output voltage. The FLC is designed for the outer (voltage) loop while the inner (current) loop is controlled by the PIC. For the developed ?19.6 V NOESLLC, the dynamic performances for different perturbations (line, load and component variations) are obtained for PIC plus FLC and compared with PIC plus PIC. The study of two cases is performed at various operating regions by developing the MATLAB/Simulink model.展开更多
文摘In this paper,a DC-DC multi-port converter is introduced by integrating a super-lift and a buck converter(SLBC).The proposed single-input dual-output(SIDO)converter has conventional positive output voltage super-lift advantages while simultaneously generating a step・up voltage by Luo・converter and a step-down voltage by the buck converter.In this structure,without utilizing electromagnetic components to generate a dual output,the ripple in output voltages is kept low.Meanwhile,the introduced SLBC has a simple structure and an appropriate control method providing a wide range of output voltages.Besides,to illustrate the advantages of the proposed SIDO converter,a comparison with other similar configurations is carried out.Also,simulation and experiment results indicate a considerable reduction in conduction losses compared to other SIDO converters in the same situations.The operation accuracy of SLBC is validated by performing several simulations in PSCAD/EMTDC software and testing a 150W prototype in the laboratory.
文摘In this paper, the design of a proportional integral controller (PIC) plus fuzzy logic controller (FLC) for the negative output elementary super lift Luo converter (NOESLLC) operated in discontinuous conduction mode (DCM) is presented. In spite of the many benefits viz. the high voltage transfer gain, the high efficiency, and the reduced inductor current and the capacitor voltage ripples, it natured with non-minimum phase. This characteristic makes the control of NOESLLC cumbersome. Any attempt of direct controlling the output voltage may erupt to instability. To overcome this problem, indirect regulation of the output voltage based on the two-loop controller is devised. The savvy in the inductor current control improves the dynamic response of the output voltage. The FLC is designed for the outer (voltage) loop while the inner (current) loop is controlled by the PIC. For the developed ?19.6 V NOESLLC, the dynamic performances for different perturbations (line, load and component variations) are obtained for PIC plus FLC and compared with PIC plus PIC. The study of two cases is performed at various operating regions by developing the MATLAB/Simulink model.