Lunar exploration is deemed crucial for uncovering the origins of the Earth-Moon system and is the first step for advancing humanity’s exploration of deep space.Over the past decade,the Chinese Lunar Exploration Prog...Lunar exploration is deemed crucial for uncovering the origins of the Earth-Moon system and is the first step for advancing humanity’s exploration of deep space.Over the past decade,the Chinese Lunar Exploration Program(CLEP),also known as the Chang’e(CE)Project,has achieved remarkable milestones.It has successfully developed and demonstrated the engineering capability required to reach and return from the lunar surface.Notably,the CE Project has made historic firsts with the landing and on-site exploration of the far side of the Moon,along with the collection of the youngest volcanic samples from the Procellarum KREEP Terrane.These achievements have significantly enhanced our understanding of lunar evolution.Building on this success,China has proposed an ambitious crewed lunar exploration strategy,aiming to return to the Moon for scientific exploration and utilization.This plan encompasses two primary phases:the first crewed lunar landing and exploration,followed by a thousand-kilometer scale scientific expedition to construct a geological cross-section across the lunar surface.Recognizing the limitations of current lunar exploration efforts and China’s engineering and technical capabilities,this paper explores the benefits of crewed lunar exploration while leveraging synergies with robotic exploration.The study refines fundamental lunar scientific questions that could lead to significant breakthroughs,considering the respective engineering and technological requirements.This research lays a crucial foundation for defining the objectives of future lunar exploration,emphasizing the importance of crewed missions and offering insights into potential advancements in lunar science.展开更多
In this study,the terrain correction for lunar free-air gravity anomaly (FAGA) is calculated in spherical coordinates based on the global topography data detected by the laser altimeter on Chang'E-1 (CE-1). The ob...In this study,the terrain correction for lunar free-air gravity anomaly (FAGA) is calculated in spherical coordinates based on the global topography data detected by the laser altimeter on Chang'E-1 (CE-1). The obtained lunar Bouguer gravity anomaly (BGA) reveals density irregularities of the interior mass. BGA is important in characterizing the mascon basins. According to the BGA of the Moon,the South Pole-Aitken (SPA) basin is considered the largest mascon basin on the Moon,and the feature of BGA in the basin implies the impacting direction. Further,the mascon basins seem to be classified into two types,Type Highland and Type Plain. For the mascon basins of Type Highland the dense materials mainly come from the shallow crust,which are associated with the basalt deposits. The other type,Type Plain,includes mascon basins whose major dense materials may be located deep at the litho-sphere,corresponding to the uplifted mantle.展开更多
月球基地建设需要大量建筑材料,其中原位利用月壤能有效减少材料和运输成本。为了研究水玻璃固化模拟月壤抗压强度增长机理,分别进行了不同水玻璃掺量下的模拟月壤单轴抗压强度试验,X射线衍射和SEM(scanning electron microscope)电镜...月球基地建设需要大量建筑材料,其中原位利用月壤能有效减少材料和运输成本。为了研究水玻璃固化模拟月壤抗压强度增长机理,分别进行了不同水玻璃掺量下的模拟月壤单轴抗压强度试验,X射线衍射和SEM(scanning electron microscope)电镜扫描试验,得到了水玻璃固化模拟月壤的单轴抗压强度变化规律,分析了能量变化特征和微观结构。研究结果表明:掺入适量水玻璃能提高模拟月壤的单轴抗压强度;采用掺量为5%的水玻璃,在85℃条件下养护28 d模拟月壤的抗压强度可达到3.23 MPa;此时模拟月壤的总能量和弹性能均达到最大值,随着水玻璃掺量不断增加,耗散能整体上呈现下降趋势。微观结构分析表明:水玻璃的碱激发作用和吸附作用所生成N—A—S—H凝胶、钙矾石(AFt)等水化产物填充在颗粒周围,松散的骨架颗粒通过凝胶胶结成致密的网状结构,从而使模拟月壤的强度得到提高。展开更多
基金supported by the National Natural Science Foundation of China(L2224032)the Research Project on the Discipline Development Strategy of Academic Divisions of the Chinese Academy of Sciences(XK2022DXC004).
文摘Lunar exploration is deemed crucial for uncovering the origins of the Earth-Moon system and is the first step for advancing humanity’s exploration of deep space.Over the past decade,the Chinese Lunar Exploration Program(CLEP),also known as the Chang’e(CE)Project,has achieved remarkable milestones.It has successfully developed and demonstrated the engineering capability required to reach and return from the lunar surface.Notably,the CE Project has made historic firsts with the landing and on-site exploration of the far side of the Moon,along with the collection of the youngest volcanic samples from the Procellarum KREEP Terrane.These achievements have significantly enhanced our understanding of lunar evolution.Building on this success,China has proposed an ambitious crewed lunar exploration strategy,aiming to return to the Moon for scientific exploration and utilization.This plan encompasses two primary phases:the first crewed lunar landing and exploration,followed by a thousand-kilometer scale scientific expedition to construct a geological cross-section across the lunar surface.Recognizing the limitations of current lunar exploration efforts and China’s engineering and technical capabilities,this paper explores the benefits of crewed lunar exploration while leveraging synergies with robotic exploration.The study refines fundamental lunar scientific questions that could lead to significant breakthroughs,considering the respective engineering and technological requirements.This research lays a crucial foundation for defining the objectives of future lunar exploration,emphasizing the importance of crewed missions and offering insights into potential advancements in lunar science.
基金Supported by the National Natural Science Foundation of China (Grant No. 40774060)
文摘In this study,the terrain correction for lunar free-air gravity anomaly (FAGA) is calculated in spherical coordinates based on the global topography data detected by the laser altimeter on Chang'E-1 (CE-1). The obtained lunar Bouguer gravity anomaly (BGA) reveals density irregularities of the interior mass. BGA is important in characterizing the mascon basins. According to the BGA of the Moon,the South Pole-Aitken (SPA) basin is considered the largest mascon basin on the Moon,and the feature of BGA in the basin implies the impacting direction. Further,the mascon basins seem to be classified into two types,Type Highland and Type Plain. For the mascon basins of Type Highland the dense materials mainly come from the shallow crust,which are associated with the basalt deposits. The other type,Type Plain,includes mascon basins whose major dense materials may be located deep at the litho-sphere,corresponding to the uplifted mantle.
文摘月球基地建设需要大量建筑材料,其中原位利用月壤能有效减少材料和运输成本。为了研究水玻璃固化模拟月壤抗压强度增长机理,分别进行了不同水玻璃掺量下的模拟月壤单轴抗压强度试验,X射线衍射和SEM(scanning electron microscope)电镜扫描试验,得到了水玻璃固化模拟月壤的单轴抗压强度变化规律,分析了能量变化特征和微观结构。研究结果表明:掺入适量水玻璃能提高模拟月壤的单轴抗压强度;采用掺量为5%的水玻璃,在85℃条件下养护28 d模拟月壤的抗压强度可达到3.23 MPa;此时模拟月壤的总能量和弹性能均达到最大值,随着水玻璃掺量不断增加,耗散能整体上呈现下降趋势。微观结构分析表明:水玻璃的碱激发作用和吸附作用所生成N—A—S—H凝胶、钙矾石(AFt)等水化产物填充在颗粒周围,松散的骨架颗粒通过凝胶胶结成致密的网状结构,从而使模拟月壤的强度得到提高。