Hot-swaging yields a high ultimate tensile strength of 712 MPa but a limited tensile ductility with the total elongation of3.6%at a testing temperature of 200℃in a representative W-0.5wt.%ZrC alloy.In this work,the e...Hot-swaging yields a high ultimate tensile strength of 712 MPa but a limited tensile ductility with the total elongation of3.6%at a testing temperature of 200℃in a representative W-0.5wt.%ZrC alloy.In this work,the evolution of Vickers microhardness with annealing temperatures is investigated in detail,which contributes to a rough index chart to guide the search for an optimized post-annealing temperature.Through the post-annealing around 1300℃,an outstanding tensile ductility at200℃,including a uniform elongation of 14%and a total elongation of~25%,has been achieved without the sacrifice of its strength.The evolution of dislocations and grain structures with the annealing temperatures accessed through backscattered scanning electron microscope and transmission electron microscope analysis reveals that the improved low-temperature tensile ductility has resulted from the reduction of residual dislocations and dislocation tanglement via the static recovery,which provides more room to accommodate dislocations,and hence stronger strain hardening ability and tensile ductility.展开更多
A low-alloyed Mg-1.2Zn-0.1Ca(wt.%)alloy was fabricated via low-temperature extrusion and annealing at 250℃for different times(10,30,and 90 min)to attain heterostructures with different fine-grained fractions,focusing...A low-alloyed Mg-1.2Zn-0.1Ca(wt.%)alloy was fabricated via low-temperature extrusion and annealing at 250℃for different times(10,30,and 90 min)to attain heterostructures with different fine-grained fractions,focusing on the effect of heterostructure on the mechanical properties.Partial dynamic recrystallization(RX)occurred during extrusion at 150℃,and a lamellar structure consisting of fine RX grains and coarse unRX grains was obtained.The subsequent annealing promoted static RX in the as-extruded alloy,leading to an increased fine-grained fraction from 67%to 95%.Meanwhile,the co-segregation of Zn and Ca atoms impeded the migration of grain boundaries,thus achieving a fine grain size of 0.8–1.6μm.The sample annealed for 10 min with a fine-grained fraction of 73%and an average RX grain size of 0.9μm exhibited a superior combination of high yield strength(305 MPa)and good ductility(20%).In comparison,an excellent elongation of 30%was achieved in the alloy with a nearly fully-RXed microstructure and an average grain size of 1.6μm after 90 min annealing,despite a lower yield strength of 228 MPa.In unRX grains,the hard orientation with(01–10)parallel to the extrusion direction and high-density dislocations made it more difficult to deform compared with the RX grains,thus producing hetero-deformation induced(HDI)strengthening.Besides fine grains and high-density dislocations,HDI strengthening is the key to achieving the superior mechanical properties of the low-alloyed Mg alloy.展开更多
In this work,a method to acquire freestanding GaN by using low temperature(LT)-GaN layer was put forward.To obtain porous structure and increase the crystallinity,LT-GaN layers were annealed at high temperature.The mo...In this work,a method to acquire freestanding GaN by using low temperature(LT)-GaN layer was put forward.To obtain porous structure and increase the crystallinity,LT-GaN layers were annealed at high temperature.The morphology of LTGaN layers with different thickness and annealing temperature before and after annealing was analyzed.Comparison of GaN films using different LT-GaN layers was made to acquire optimal LT-GaN process.According to HRXRD and Raman results,GaN grown on 800 nm LT-GaN layer which was annealed at 1090℃ has good crystal quality and small stress.The GaN film was successfully separated from the substrate after cooling down.The self-separation mechanism of this method was discussed.Cross-sectional EBSD mapping measurements were carried out to investigate the effect of LT-buffer layer on improvement of crystal quality and stress relief.The optical property of the obtained freestanding GaN film was also determined by PL measurement.展开更多
South China can be divided into four metallogenic belts:The Middle-Lower Yangtze Metallogenic Belt(MLYB),Qinzhou-Hangzhou Metallogenic Belt(QHMB),Nanling Metallogenic Belt(NLMB),and Wuyi Metallogenic Belt(WYMB).The ma...South China can be divided into four metallogenic belts:The Middle-Lower Yangtze Metallogenic Belt(MLYB),Qinzhou-Hangzhou Metallogenic Belt(QHMB),Nanling Metallogenic Belt(NLMB),and Wuyi Metallogenic Belt(WYMB).The major mineralization in the four metallogenic belts is granite-related Cu–Au–Mo and porphyrite Fe-apatite,porphyry Cu(Au),and epithermal Pb–Zn–Ag,hydrothermal Cu–Au–Pb–Zn–Ag,and granite-related skarn-type and quartz-veins W–Sn,respectively.Low-temperature thermochronology,including fissiontrack and U-Th/He dating,has been widely used to constrain tectonic thermal evolution and ore deposits preservation.Understanding fission-track annealing and He diffusion kinetics in accessory minerals,such as zircon and apatite,is essential for dating and applications.In this study,previous zircon fission-track(ZFT)and apatite fission-track(AFT)ages in South China were collected.The result shows that the ZFT ages are mainly concentrated at140–90 Ma,and the AFT ages are mainly distributed at70–40 Ma.The age distribution and inversion temperature–time paths reveal heterogeneous exhumation histories in South China.The MLYB experienced Late CretaceousCenozoic extremely slow exhumation after rapid cooling in the Early Cretaceous.The northern QHMB(i.e.from southern Anhui province to the Hangzhou Bay)had a relatively faster rate of uplifting and denudation than the southern QHMB in the Cretaceous.Subsequently,the northern QHMB rapidly exhumed,while the continuously slow exhumation operated the southern QHMB in the Cenozoic.The southern NLMB had a more rapid cooling rate than the northern NLMB during the Cretaceous time,and the whole NLMB experienced rapid cooling in the Cenozoic,except that the southern Hunan province had the most rapid cooling rate.The WYMB possibly had experienced slow exhumation since the Late Cretaceous.The exhumation thickness of the four metallogenic belts since90 Ma is approximately calculated as follows:the MLYB≤3.5 km,the northern QHMB concentrated at3.5–5.5 km,and the s展开更多
基金financially supported by the National Key Research and Development Program of China (Grant Nos.2019YFE03110200,2019YFE03120001 and 2022YFE03140002)the National Natural Science Foundation of China (Grant Nos.:52173303,11735015,52171084,U1967211)+2 种基金an Anhui Provincial Natural Science Foundation (No.1908085J17)the Major Science and Technology Projects of Anhui Province (No.202103a05020016)a HFIPS Director’s Fund (YZJJZX202012,YZJJ202206-CX,BJPY2021A05)。
文摘Hot-swaging yields a high ultimate tensile strength of 712 MPa but a limited tensile ductility with the total elongation of3.6%at a testing temperature of 200℃in a representative W-0.5wt.%ZrC alloy.In this work,the evolution of Vickers microhardness with annealing temperatures is investigated in detail,which contributes to a rough index chart to guide the search for an optimized post-annealing temperature.Through the post-annealing around 1300℃,an outstanding tensile ductility at200℃,including a uniform elongation of 14%and a total elongation of~25%,has been achieved without the sacrifice of its strength.The evolution of dislocations and grain structures with the annealing temperatures accessed through backscattered scanning electron microscope and transmission electron microscope analysis reveals that the improved low-temperature tensile ductility has resulted from the reduction of residual dislocations and dislocation tanglement via the static recovery,which provides more room to accommodate dislocations,and hence stronger strain hardening ability and tensile ductility.
基金the Key-Area Research and Development Program of Guangdong Province(No.2020B010186002)the Natural Science Foundation of Guangdong for Research Team(No.2015A030312003)。
文摘A low-alloyed Mg-1.2Zn-0.1Ca(wt.%)alloy was fabricated via low-temperature extrusion and annealing at 250℃for different times(10,30,and 90 min)to attain heterostructures with different fine-grained fractions,focusing on the effect of heterostructure on the mechanical properties.Partial dynamic recrystallization(RX)occurred during extrusion at 150℃,and a lamellar structure consisting of fine RX grains and coarse unRX grains was obtained.The subsequent annealing promoted static RX in the as-extruded alloy,leading to an increased fine-grained fraction from 67%to 95%.Meanwhile,the co-segregation of Zn and Ca atoms impeded the migration of grain boundaries,thus achieving a fine grain size of 0.8–1.6μm.The sample annealed for 10 min with a fine-grained fraction of 73%and an average RX grain size of 0.9μm exhibited a superior combination of high yield strength(305 MPa)and good ductility(20%).In comparison,an excellent elongation of 30%was achieved in the alloy with a nearly fully-RXed microstructure and an average grain size of 1.6μm after 90 min annealing,despite a lower yield strength of 228 MPa.In unRX grains,the hard orientation with(01–10)parallel to the extrusion direction and high-density dislocations made it more difficult to deform compared with the RX grains,thus producing hetero-deformation induced(HDI)strengthening.Besides fine grains and high-density dislocations,HDI strengthening is the key to achieving the superior mechanical properties of the low-alloyed Mg alloy.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51702226,51572153 and 51602177)the Natural Science Foundation of Shanxi Province(Grant No.201701D221078).
文摘In this work,a method to acquire freestanding GaN by using low temperature(LT)-GaN layer was put forward.To obtain porous structure and increase the crystallinity,LT-GaN layers were annealed at high temperature.The morphology of LTGaN layers with different thickness and annealing temperature before and after annealing was analyzed.Comparison of GaN films using different LT-GaN layers was made to acquire optimal LT-GaN process.According to HRXRD and Raman results,GaN grown on 800 nm LT-GaN layer which was annealed at 1090℃ has good crystal quality and small stress.The GaN film was successfully separated from the substrate after cooling down.The self-separation mechanism of this method was discussed.Cross-sectional EBSD mapping measurements were carried out to investigate the effect of LT-buffer layer on improvement of crystal quality and stress relief.The optical property of the obtained freestanding GaN film was also determined by PL measurement.
基金the National Science Fund for Distinguished Young Scholars(42025301)Natural Science Foundation of China(41673057)。
文摘South China can be divided into four metallogenic belts:The Middle-Lower Yangtze Metallogenic Belt(MLYB),Qinzhou-Hangzhou Metallogenic Belt(QHMB),Nanling Metallogenic Belt(NLMB),and Wuyi Metallogenic Belt(WYMB).The major mineralization in the four metallogenic belts is granite-related Cu–Au–Mo and porphyrite Fe-apatite,porphyry Cu(Au),and epithermal Pb–Zn–Ag,hydrothermal Cu–Au–Pb–Zn–Ag,and granite-related skarn-type and quartz-veins W–Sn,respectively.Low-temperature thermochronology,including fissiontrack and U-Th/He dating,has been widely used to constrain tectonic thermal evolution and ore deposits preservation.Understanding fission-track annealing and He diffusion kinetics in accessory minerals,such as zircon and apatite,is essential for dating and applications.In this study,previous zircon fission-track(ZFT)and apatite fission-track(AFT)ages in South China were collected.The result shows that the ZFT ages are mainly concentrated at140–90 Ma,and the AFT ages are mainly distributed at70–40 Ma.The age distribution and inversion temperature–time paths reveal heterogeneous exhumation histories in South China.The MLYB experienced Late CretaceousCenozoic extremely slow exhumation after rapid cooling in the Early Cretaceous.The northern QHMB(i.e.from southern Anhui province to the Hangzhou Bay)had a relatively faster rate of uplifting and denudation than the southern QHMB in the Cretaceous.Subsequently,the northern QHMB rapidly exhumed,while the continuously slow exhumation operated the southern QHMB in the Cenozoic.The southern NLMB had a more rapid cooling rate than the northern NLMB during the Cretaceous time,and the whole NLMB experienced rapid cooling in the Cenozoic,except that the southern Hunan province had the most rapid cooling rate.The WYMB possibly had experienced slow exhumation since the Late Cretaceous.The exhumation thickness of the four metallogenic belts since90 Ma is approximately calculated as follows:the MLYB≤3.5 km,the northern QHMB concentrated at3.5–5.5 km,and the s