A novel liquid cooling device for a prismatic LiFePO4 battery module was proposed and manufactured in this study in order to improve the thermal management performance of the battery module operating at high ambient t...A novel liquid cooling device for a prismatic LiFePO4 battery module was proposed and manufactured in this study in order to improve the thermal management performance of the battery module operating at high ambient temperature.A testing system was set up to experimentally measure temperatures in different locations of the battery module consisting of seven 60 Ah cells.Tests were conducted to investigate both the passive and active cooling performances of the proposed system at different ambient temperatures and discharging rates in regarding with the maximum temperature and difference between the maximum and minimum temperatures.The results clearly show that both the ambient temperature and discharging rate play important role on the maximum temperature of the battery module.Passive cooling cannot meet the cooling requirement of the battery module particularly at high ambient temperature of 40℃.In contrary,liquid cooling can successfully reduce the maximum temperature to the required temperature range of the battery module even in high temperature environment and relatively high discharging rate.The effect of water inlet temperature on the cooling performance was also experimentally studied.With the inlet temperature of 28℃,the active cooling device can reduce the maximum temperature of the battery module to about 34.8℃after discharging at 0.6℃for 1000 s.The temperature difference of only 3.8℃was also achieved which suggests a great uniform distribution of temperature in the battery module.展开更多
Temperature uniformity of lithium-ion batteries and maintaining the temperature within the range for efficient operation are addressed.First,Liquid cold plates are placed on the sides of a prismatic battery,and fins m...Temperature uniformity of lithium-ion batteries and maintaining the temperature within the range for efficient operation are addressed.First,Liquid cold plates are placed on the sides of a prismatic battery,and fins made of aluminum alloy or graphite sheets are applied between battery cells to improve the heat transfer performance.Then a simulation model is built with 70 battery cells and 6 liquid cold plates,and the performance is analyzed according to the flow rate,liquid temperature,and discharge rate.Finally,the results show that temperature differences are mainly caused by the liquid cold plates.The fin surface determines the equivalent thermal conductivity of the battery.The graphite sheets have heterogeneous thermal conductivity,which help improve temperature uniformity and reduce the temperature gradient.With lower density than the aluminum alloy,they offer a lower gravimetric power density for the same heat transfer capacity.In addition to the equivalent thermal conductivity,the temperature difference between the cooling liquid and battery surface is an important parameter for temperature uniformity.Optimizing the fin thickness is found to be an effective way to reduce the temperature difference between the liquid and battery during cooling and improve the temperature uniformity.展开更多
基金the National Key R&D Program of China(Grant No.2018YFB1502600)National Natural Science Foundation of China(Grant No.11932005)。
文摘A novel liquid cooling device for a prismatic LiFePO4 battery module was proposed and manufactured in this study in order to improve the thermal management performance of the battery module operating at high ambient temperature.A testing system was set up to experimentally measure temperatures in different locations of the battery module consisting of seven 60 Ah cells.Tests were conducted to investigate both the passive and active cooling performances of the proposed system at different ambient temperatures and discharging rates in regarding with the maximum temperature and difference between the maximum and minimum temperatures.The results clearly show that both the ambient temperature and discharging rate play important role on the maximum temperature of the battery module.Passive cooling cannot meet the cooling requirement of the battery module particularly at high ambient temperature of 40℃.In contrary,liquid cooling can successfully reduce the maximum temperature to the required temperature range of the battery module even in high temperature environment and relatively high discharging rate.The effect of water inlet temperature on the cooling performance was also experimentally studied.With the inlet temperature of 28℃,the active cooling device can reduce the maximum temperature of the battery module to about 34.8℃after discharging at 0.6℃for 1000 s.The temperature difference of only 3.8℃was also achieved which suggests a great uniform distribution of temperature in the battery module.
基金The work is supported by Double Ten“Science&Technology Innovation Project of Jilin Province of China”NO.17SS022The work is also supported by the China Scholarship Council(CSC)for the first author’s scholarship.
文摘Temperature uniformity of lithium-ion batteries and maintaining the temperature within the range for efficient operation are addressed.First,Liquid cold plates are placed on the sides of a prismatic battery,and fins made of aluminum alloy or graphite sheets are applied between battery cells to improve the heat transfer performance.Then a simulation model is built with 70 battery cells and 6 liquid cold plates,and the performance is analyzed according to the flow rate,liquid temperature,and discharge rate.Finally,the results show that temperature differences are mainly caused by the liquid cold plates.The fin surface determines the equivalent thermal conductivity of the battery.The graphite sheets have heterogeneous thermal conductivity,which help improve temperature uniformity and reduce the temperature gradient.With lower density than the aluminum alloy,they offer a lower gravimetric power density for the same heat transfer capacity.In addition to the equivalent thermal conductivity,the temperature difference between the cooling liquid and battery surface is an important parameter for temperature uniformity.Optimizing the fin thickness is found to be an effective way to reduce the temperature difference between the liquid and battery during cooling and improve the temperature uniformity.