Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to gener...Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to generate negative stiffness and design a new quasi-zero stiffness isolator via torsion springs,distinguishing from the existing tension spring structures in the literature.The nonlinear mathematical model of the proposed structure is developed and the corresponding dynamic properties are further investigated by using the Harmonic Balance method and ADAMS verification.To evaluate the vibration isolation performance,typical three-springs quasi-zero stiffness(TS QZS)system is selected to compare with the proposed bionic structure.And the graphical processing unit(GPU)parallel technology is applied to perform necessary two-parameter analyses,providing more insights into the effects of parameters on the transmissibility.It is shown that the proposed structure can show advantages over the typical TS QZS system in a wider vibration isolation range for harmonic excitation case and shorter decay time for the impact excitation case.展开更多
Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ...Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.展开更多
该研究旨在检测与中国荷斯坦牛体型性状(肢蹄结构和乳房形态)相关的显著位点和候选基因。在300头中国荷斯坦牛群体中,利用GeneSeek Genomic Profiler Bovine 50 K SNP chip芯片进行基于混合线性模型全基因组关联分析。分析结果经过Bonfe...该研究旨在检测与中国荷斯坦牛体型性状(肢蹄结构和乳房形态)相关的显著位点和候选基因。在300头中国荷斯坦牛群体中,利用GeneSeek Genomic Profiler Bovine 50 K SNP chip芯片进行基于混合线性模型全基因组关联分析。分析结果经过Bonferroni校正后,共检测到25个显著SNPs(P<1/40501)位点,其中8个与肢蹄结构相关,17个与乳房形态相关。基于显著SNP位点寻找候选基因,鉴定到与乳腺癌相关候选基因ZMYND8、PTK2及与调节多种代谢通路相关的基因LEP、OSTF1等基因。该研究为解析中国荷斯坦牛肢蹄结构和乳房形态性状提供可能的候选基因,同时为奶牛的分子育种提供重要理论支持。展开更多
Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patie...Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons.展开更多
基金supported by the National Natural Science Foundation of China(Grants 11832009 and 11672104)the Chair Professor of Lotus Scholars Program in Hunan province(Grants XJT2015408)。
文摘Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to generate negative stiffness and design a new quasi-zero stiffness isolator via torsion springs,distinguishing from the existing tension spring structures in the literature.The nonlinear mathematical model of the proposed structure is developed and the corresponding dynamic properties are further investigated by using the Harmonic Balance method and ADAMS verification.To evaluate the vibration isolation performance,typical three-springs quasi-zero stiffness(TS QZS)system is selected to compare with the proposed bionic structure.And the graphical processing unit(GPU)parallel technology is applied to perform necessary two-parameter analyses,providing more insights into the effects of parameters on the transmissibility.It is shown that the proposed structure can show advantages over the typical TS QZS system in a wider vibration isolation range for harmonic excitation case and shorter decay time for the impact excitation case.
基金the National Natural Science Foundation of China (Nos. 52388102, 52072317 and U2268210)the State Key Laboratory of Rail Transit Vehicle System (No. 2024RVL-T12)
文摘Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.
文摘该研究旨在检测与中国荷斯坦牛体型性状(肢蹄结构和乳房形态)相关的显著位点和候选基因。在300头中国荷斯坦牛群体中,利用GeneSeek Genomic Profiler Bovine 50 K SNP chip芯片进行基于混合线性模型全基因组关联分析。分析结果经过Bonferroni校正后,共检测到25个显著SNPs(P<1/40501)位点,其中8个与肢蹄结构相关,17个与乳房形态相关。基于显著SNP位点寻找候选基因,鉴定到与乳腺癌相关候选基因ZMYND8、PTK2及与调节多种代谢通路相关的基因LEP、OSTF1等基因。该研究为解析中国荷斯坦牛肢蹄结构和乳房形态性状提供可能的候选基因,同时为奶牛的分子育种提供重要理论支持。
基金Supported by National Natural Science Foundation of China(Grant No.61273342)Beijing Municipal Natural Science Foundation of China(Grant Nos.3113026,3132005)
文摘Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons.