A novel nanocomposite of Ni nanoparticles loaded on Mg-doped Al_(2)O_(3)(Ni/Mg-Al_(2)O_(3))was prepared.By photothermocatalytic CO_(2) reduction with methane(CRM)merely using focused UV-vis-IR illumination on Ni/Mg-Al...A novel nanocomposite of Ni nanoparticles loaded on Mg-doped Al_(2)O_(3)(Ni/Mg-Al_(2)O_(3))was prepared.By photothermocatalytic CO_(2) reduction with methane(CRM)merely using focused UV-vis-IR illumination on Ni/Mg-Al_(2)O_(3),high production rates of H_(2)(r_(H2),69.71 mmol min^(−1) g^(−1))and CO(rCO,74.57 mmol min^(−1) g^(−1))and an extremely large light-to-fuel efficiency(η,32.9%)are acquired.High rH2 and rCO(51.07 and 59.66 mmol min^(−1) g^(−1))and a largeη(32.5%)are acquired even by using focusedλ>560 nm vis-IR illumination.Ni/Mg-Al_(2)O_(3) shows good durability for photothermocatalytic CRM due to the side reaction of carbon deposition being enormously inhibited in comparison with a reference catalyst of Ni nanoparticles loaded on Al_(2)O_(3).The enormous carbon deposition inhibition is ascribed to the presence of a fence of CO_(2) molecules(strongly adsorbed on Mg-doped Al_(2)O_(3))around Ni nanoparticles,which block the polymerization and growth of carbon species to nanofibers by promoting the oxidation of carbon species formed by CH_(4) dissociation.The high photothermocatalytic activity of Ni/Mg-Al_(2)O_(3) arises from efficient light-driven thermocatalytic CRM.A photoactivation is found to considerably raise the photothermocatalytic activity of Ni/Mg-Al_(2)O_(3) because of the apparent activation energy(Ea)being substantially decreased upon focused illumination.The Ea reduction is associated with the rate-determining steps of CRM(e.g.,CH_(4) dissociation and the oxidation of carbon species)being accelerated upon focused illumination.展开更多
基金supported by National Natural Science Foundation of China(21972109,21673168)DFT calculations were conducted at the Shanghai Supercomputer Center(SSC),China.
文摘A novel nanocomposite of Ni nanoparticles loaded on Mg-doped Al_(2)O_(3)(Ni/Mg-Al_(2)O_(3))was prepared.By photothermocatalytic CO_(2) reduction with methane(CRM)merely using focused UV-vis-IR illumination on Ni/Mg-Al_(2)O_(3),high production rates of H_(2)(r_(H2),69.71 mmol min^(−1) g^(−1))and CO(rCO,74.57 mmol min^(−1) g^(−1))and an extremely large light-to-fuel efficiency(η,32.9%)are acquired.High rH2 and rCO(51.07 and 59.66 mmol min^(−1) g^(−1))and a largeη(32.5%)are acquired even by using focusedλ>560 nm vis-IR illumination.Ni/Mg-Al_(2)O_(3) shows good durability for photothermocatalytic CRM due to the side reaction of carbon deposition being enormously inhibited in comparison with a reference catalyst of Ni nanoparticles loaded on Al_(2)O_(3).The enormous carbon deposition inhibition is ascribed to the presence of a fence of CO_(2) molecules(strongly adsorbed on Mg-doped Al_(2)O_(3))around Ni nanoparticles,which block the polymerization and growth of carbon species to nanofibers by promoting the oxidation of carbon species formed by CH_(4) dissociation.The high photothermocatalytic activity of Ni/Mg-Al_(2)O_(3) arises from efficient light-driven thermocatalytic CRM.A photoactivation is found to considerably raise the photothermocatalytic activity of Ni/Mg-Al_(2)O_(3) because of the apparent activation energy(Ea)being substantially decreased upon focused illumination.The Ea reduction is associated with the rate-determining steps of CRM(e.g.,CH_(4) dissociation and the oxidation of carbon species)being accelerated upon focused illumination.