期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
支撑矢量机推广能力分析 被引量:56
1
作者 周伟达 张莉 焦李成 《电子学报》 EI CAS CSCD 北大核心 2001年第5期590-594,共5页
本文针对两种不同用途的支撑矢量机 ,分类支撑矢量机和回归支撑矢量机 ,分别证明了它们的一些几何性质 ,从这些性质出发讨论了这两种支撑矢量机对新增样本的推广能力 ,新增样本对支撑矢量 ,非支撑矢量的影响以及新增样本本身的一些特点 ... 本文针对两种不同用途的支撑矢量机 ,分类支撑矢量机和回归支撑矢量机 ,分别证明了它们的一些几何性质 ,从这些性质出发讨论了这两种支撑矢量机对新增样本的推广能力 ,新增样本对支撑矢量 ,非支撑矢量的影响以及新增样本本身的一些特点 ,得到了一些非常有价值的结论 .从这些结论可以看出支撑矢量机对新增样本具有良好的推广能力 ,即对新增样本的良好的包容性和适应性 ,并且支撑矢量机是一种可积累的学习模型 . 展开更多
关键词 分类支撑矢量机 回归支撑矢量机 学习机
下载PDF
一种用于知识自动获取的多策略学习方法 被引量:3
2
作者 孙杰 吴慧中 《南京理工大学学报》 CAS CSCD 1995年第2期101-104,共4页
该文分析了机器学习中几种常用学习策略的特性,提出了一种适用于知识自动获取过程的推广一特化知识表示方法,并给出了一个融合演绎、归纳与类比的多策略学习算法。该算法将学习问题的不确定性和多种学习策略溶进命题集合的描述和变换... 该文分析了机器学习中几种常用学习策略的特性,提出了一种适用于知识自动获取过程的推广一特化知识表示方法,并给出了一个融合演绎、归纳与类比的多策略学习算法。该算法将学习问题的不确定性和多种学习策略溶进命题集合的描述和变换中,强调学习算法与领域专家在知识获取中的协作关系。因此,它是一种面向领域专家的交互式学习方法。通过在机械设计专家系统MDESⅡ知识获取中的实际应用,表明了该算法对设计类知识获取的有效性。 展开更多
关键词 学习机 学习系统 多策略学习 知识自动获取
下载PDF
m依赖过程经验风险最小化算法的泛化性能 被引量:3
3
作者 闫灿伟 曹飞龙 《中国计量学院学报》 2009年第4期357-361,共5页
m依赖过程作为非独立序列的典型样本,其经验风险最小化的泛化性能不容忽视.为了研究基于m依赖过程经验风险最小化算法的推广能力,我们将基于独立同分布序列的相关结论推广到m依赖过程情形中,进一步利用m依赖过程的Bernstein不等式,建立... m依赖过程作为非独立序列的典型样本,其经验风险最小化的泛化性能不容忽视.为了研究基于m依赖过程经验风险最小化算法的推广能力,我们将基于独立同分布序列的相关结论推广到m依赖过程情形中,进一步利用m依赖过程的Bernstein不等式,建立该序列经验风险最小化原则一致收敛的指数界. 展开更多
关键词 推广能力 经验风险最小化原则 m依赖过程 一致收敛
下载PDF
基于OS-ELM的CCPP副产煤气燃料系统在线性能预测 被引量:2
4
作者 褚菲 叶俊锋 +2 位作者 马小平 张淑宁 吴奇 《工程科学学报》 EI CSCD 北大核心 2016年第6期861-866,共6页
针对联合循环发电厂(combined cycle power plant,CCPP)煤气系统因工况变化频繁带来的模型与过程不匹配的问题,提出一种基于OS-ELM(online sequential extreme learning machine)的CCPP副产煤气燃料系统在线性能预测方法.首先通过分析... 针对联合循环发电厂(combined cycle power plant,CCPP)煤气系统因工况变化频繁带来的模型与过程不匹配的问题,提出一种基于OS-ELM(online sequential extreme learning machine)的CCPP副产煤气燃料系统在线性能预测方法.首先通过分析副产煤气系统各主要组成部件的工作原理,利用流体力学、质量守恒以及能量守恒等关系,建立起以离心压缩机、煤水分离器、冷却器等为核心部件的副产煤气系统机理模型.利用OS-ELM算法和滑动窗口技术对机理模型的输出误差进行修正,实现副产煤气系统出口参数的精确预测和模型的快速在线更新.仿真实验证明,该方法能够准确地预测副产煤气系统的输出压比和温比,并能够跟踪煤气系统工况的变化和特性的漂移,满足实际工业生产的需求. 展开更多
关键词 联合循环发电厂 煤气 性能预测 学习机 在线系统
原文传递
基于IGA-ELM网络的滚动轴承故障诊断 被引量:33
5
作者 皮骏 马圣 +3 位作者 贺嘉诚 孔庆国 林家泉 刘光才 《航空学报》 EI CAS CSCD 北大核心 2018年第9期228-239,共12页
为了提高航空发动机轴承故障诊断准确率,提出基于改进遗传算法优化极限学习机网络(IGA-ELM)的诊断模型。针对传统遗传算法易早熟等缺陷,对遗传算法的交叉操作和变异操作进行改进,并用改进的遗传算法优化极限学习机的输入权值矩阵和隐含... 为了提高航空发动机轴承故障诊断准确率,提出基于改进遗传算法优化极限学习机网络(IGA-ELM)的诊断模型。针对传统遗传算法易早熟等缺陷,对遗传算法的交叉操作和变异操作进行改进,并用改进的遗传算法优化极限学习机的输入权值矩阵和隐含层阈值,利用Moore-Penrose算法计算极限学习机的输出权值矩阵。使用IGA-ELM诊断模型对滚动轴承正常、内环故障、外环故障和滚珠故障4种工况进行诊断,并分析极限学习机隐含层神经元的数量和激活函数对轴承故障诊断的影响。为了验证改进遗传算法优化极限学习机的有效性,将传统遗传算法、自适应遗传算法和粒子群算法作为对比算法。经过分析表明:改进遗传算法收敛速度和收敛误差,均优于对比算法。 展开更多
关键词 航空发动机 轴承故障诊断 极限学习机 交叉操作 变异操作 遗传算法
原文传递
基于PCA-MPSO-ELM的空战目标威胁评估 被引量:24
6
作者 奚之飞 徐安 +2 位作者 寇英信 李战武 杨爱武 《航空学报》 EI CAS CSCD 北大核心 2020年第9期211-226,共16页
目标威胁评估是空战对抗过程中的关键环节。由于影响空战目标威胁评估的因素复杂多样,且指标之间存在相关性,导致传统的评估算法无法得到准确客观的评估结果。由此,提出了一种基于主成分分析法和改进粒子群算法优化的极限学习机(PCA-MPS... 目标威胁评估是空战对抗过程中的关键环节。由于影响空战目标威胁评估的因素复杂多样,且指标之间存在相关性,导致传统的评估算法无法得到准确客观的评估结果。由此,提出了一种基于主成分分析法和改进粒子群算法优化的极限学习机(PCA-MPSO-ELM)的目标威胁评估算法。首先,综合分析了影响目标威胁程度的指标,利用主成分分析法对原始评估指标进行线性变化处理得到综合变量,消除了评估指标之间的相关性,实现了对评估数据的降维;在此基础上,构建ELM神经网络并利用改进的粒子群算法优化极限学习机的输入权值和阈值,提高了目标威胁评估模型的精度。最后,在空战训练测量仪中选取空战对抗数据,利用威胁指数法构造了目标威胁评估样本数据,通过仿真实验分析了PCA-MPSO-ELM算法的精度和实时性,结果表明所提算法可以快速准确地进行空战目标威胁评估。 展开更多
关键词 目标威胁评估 指标相关性 改进粒子群算法 极限学习机 主成分分析
原文传递
基于卷积-自动编码机的三维形状特征学习 被引量:14
7
作者 谢智歌 王岳青 +1 位作者 窦勇 熊岳山 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第11期2058-2064,共7页
三维形状特征在三维物体分类、检索和语义分析中起着关键的作用.传统的三维特征设计过程繁复,而且不能从已有的大量三维数据中自动学习而得.在深度神经网络的研究领域中,卷积神经网络和自动编码机是比较流行的2种网络结构.在超限学习机... 三维形状特征在三维物体分类、检索和语义分析中起着关键的作用.传统的三维特征设计过程繁复,而且不能从已有的大量三维数据中自动学习而得.在深度神经网络的研究领域中,卷积神经网络和自动编码机是比较流行的2种网络结构.在超限学习机的框架之下,将两者结合起来,提出一种基于卷积-自动编码机的三维特征自动学习方法.实验结果表明,文中方法的特征学习速度比其他深度学习方法提高约2个数量级,且提取的特征在三维模型分类、三维物体检测等任务中都取得了良好的结果. 展开更多
关键词 卷积神经网络 自动编码机 超限学习机 三维特征提取
下载PDF
基于形态学属性剖面的高光谱影像集成分类 被引量:9
8
作者 鲍蕊 夏俊士 +2 位作者 薛朝辉 杜培军 车美琴 《遥感技术与应用》 CSCD 北大核心 2016年第4期731-738,共8页
传统高光谱遥感影像逐像素分类方法未考虑像元之间的空间关联性且泛化性能较低。形态学属性剖面是表征影像空间结构的有效方法,同时集成学习可显著提升分类算法的泛化能力。为了在高光谱影像分类中充分利用影像的空间信息并提高分类的... 传统高光谱遥感影像逐像素分类方法未考虑像元之间的空间关联性且泛化性能较低。形态学属性剖面是表征影像空间结构的有效方法,同时集成学习可显著提升分类算法的泛化能力。为了在高光谱影像分类中充分利用影像的空间信息并提高分类的稳定性,提出一种基于形态学属性剖面高光谱遥感影像集成学习分类方法。首先,用主成分分析和最小噪声变换进行特征提取,并借助形态学属性剖面获取影像的多重空间特征;然后用极限学习和支持向量机的方法进行分类;最后将多个分类结果以多数投票的方式集成。区别于已有集成学习方法,综合考虑了不同特征提取和不同分类方法的联合集成,并将形态学属性剖面引入其中以充分利用影像的空间信息。采用AVIRIS和ROSIS两组高光谱数据检验该方法的分类性能,实验结果表明该方法可获得高精度和高稳定性的分类结果,总体精度分别达到83.41%和95.14%。 展开更多
关键词 形态学属性剖面 集成学习 支持向量机 极限学习 高光谱影像分类
原文传递
面向SAR目标识别的深度卷积神经网络结构设计 被引量:10
9
作者 谷雨 徐英 《中国图象图形学报》 CSCD 北大核心 2018年第6期928-936,共9页
目的针对用于SAR(synthetic aperture radar)目标识别的深度卷积神经网络模型结构的优化设计难题,在分析卷积核宽度对分类性能影响基础上,设计了一种适用于SAR目标识别的深度卷积神经网络结构。方法首先基于二维随机卷积特征和具有单个... 目的针对用于SAR(synthetic aperture radar)目标识别的深度卷积神经网络模型结构的优化设计难题,在分析卷积核宽度对分类性能影响基础上,设计了一种适用于SAR目标识别的深度卷积神经网络结构。方法首先基于二维随机卷积特征和具有单个隐层的神经网络模型-超限学习机分析了卷积核宽度对SAR图像目标分类性能的影响;然后,基于上述分析结果,在实现空间特征提取的卷积层中采用多个具有不同宽度的卷积核提取目标的多尺度局部特征,设计了一种适用于SAR图像目标识别的深度模型结构;最后,在对MSTAR(moving and stationary target acquisition and recognition)数据集中的训练样本进行样本扩充基础上,设定了深度模型训练的超参数,进行了深度模型参数训练与分类性能验证。结果实验结果表明,对于具有较强相干斑噪声的SAR图像而言,采用宽度更大的卷积核能够提取目标的局部特征,提出的模型因能从输入图像提取目标的多尺度局部特征,对于10类目标的分类结果(包含非变形目标和变形目标两种情况)接近或优于已知文献的最优分类结果,目标总体分类精度分别达到了98.39%和97.69%,验证了提出模型结构的有效性。结论对于SAR图像目标识别,由于与可见光图像具有不同的成像机理,应采用更大的卷积核来提取目标的空间特征用于分类,通过对深度模型进行优化设计能够提高SAR图像目标识别的精度。 展开更多
关键词 SAR目标识别 深度卷积神经网络 结构设计 随机权重 超限学习机
原文传递
基于改进深层极限学习机的故障诊断方法 被引量:9
10
作者 李可 熊檬 +2 位作者 宿磊 卢立新 陈森 《振动.测试与诊断》 EI CSCD 北大核心 2020年第6期1120-1127,1232,共9页
提出一种新的基于稀疏和近邻保持理论深层极限学习机(sparsity and neighborhood preserving deep extreme learning machines,简称SNP-DELM)的滚动轴承故障诊断方法。首先,将极限学习机(extreme learning machine,简称ELM)与自编码器(a... 提出一种新的基于稀疏和近邻保持理论深层极限学习机(sparsity and neighborhood preserving deep extreme learning machines,简称SNP-DELM)的滚动轴承故障诊断方法。首先,将极限学习机(extreme learning machine,简称ELM)与自编码器(autoencoder,简称AE)相结合,提出一种ELM-AE的结构,利用自编码器对极限学习机的隐含层进行分层;其次,将稀疏与近邻思想融入深层网络中,在投影过程中,通过稀疏表示保持数据的全局结构,通过近邻表示保持数据的局部流形结构,无监督地逐层提取数据的深层特征;最后,通过监督学习求解最小二乘进行分类诊断。将该方法用于风机滚动轴承故障诊断实验,并与ELM、堆叠降噪自编码器(stacked autoencoder,简称SAE)、深层极限学习机(deep extreme learning machine,简称DELM)、卷积神经网络(convolution neural network,简称CNN)等方法进行对比,实验结果表明,SNP-DELM算法相对于现有的几种算法具有更高的准确率和稳定性。 展开更多
关键词 故障诊断 深层极限学习机 稀疏表示 近邻表示 滚动轴承
下载PDF
基于FWADE-ELM的短时交通流预测方法 被引量:8
11
作者 陈如清 李嘉春 俞金寿 《控制与决策》 EI CSCD 北大核心 2021年第4期925-932,共8页
受道路环境和人为因素影响,实际交通系统可视为一个复杂的非线性动力系统,交通流数据具有较强的非线性、时变性和易受随机噪声影响等特征.针对复杂环境下的短时交通流预测问题,提出一种基于烟花差分进化混合算法-极限学习机的短时交通... 受道路环境和人为因素影响,实际交通系统可视为一个复杂的非线性动力系统,交通流数据具有较强的非线性、时变性和易受随机噪声影响等特征.针对复杂环境下的短时交通流预测问题,提出一种基于烟花差分进化混合算法-极限学习机的短时交通流预测方法.采用奇异谱分析方法滤除原始交通流数据中包含的噪声成分,降噪后的交通流数据用于训练极限学习机(ELM)网络预测模型.进行相空间重构,利用C-C算法确定ELM网络的结构和关键参数.通过融合烟花算法和差分进化算法提出一种烟花差分进化混合算法,可有效提高基本算法的整体优化性能.将改进的混合优化算法用于优化ELM网络的权阈值(结构为9-11-1,维数为110),建立短时交通流预测模型.测试与应用结果表明,所构建的短时交通流预测模型具有较高的预测精度和较强的泛化能力(均方误差为7.75,平均绝对百分比误差为0.086 7),预测值与实际值的拟合程度较好. 展开更多
关键词 智能交通系统 短时交通流预测 极限学习机 奇异谱分析 混合优化算法
原文传递
基于核极限学习机的多变量非平稳脉动风速预测 被引量:7
12
作者 郑晓芬 钟旺 李春祥 《振动与冲击》 EI CSCD 北大核心 2017年第18期223-230,共8页
运用快速集合经验模态分解(FEEMD)技术将非平稳下击暴流风速分解为一系列的固有模态分量。随后,建立核极限学习机(KELM)非平稳风速预测模型(FEEMD-KELM),分别对分解后的非平稳脉动风速训练集和测试集实施预测。为比较,同时考虑了FEEMD-... 运用快速集合经验模态分解(FEEMD)技术将非平稳下击暴流风速分解为一系列的固有模态分量。随后,建立核极限学习机(KELM)非平稳风速预测模型(FEEMD-KELM),分别对分解后的非平稳脉动风速训练集和测试集实施预测。为比较,同时考虑了FEEMD-ELM的预测结果。通过比较这两种预测算法的结果,在非平稳下击暴流风速预测的稳定性和精度方面,发现FEEMD-KELM优于FEEMD-ELM。 展开更多
关键词 预测 极限学习机 核极限学习机 非平稳性 下击暴流 脉动风速 快速集合经验模态分解
下载PDF
基于极限学习机的脉动风速快速预测方法 被引量:6
13
作者 李春祥 迟恩楠 李正农 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第11期1719-1723,共5页
提出基于极限学习机(ELM)的脉动风速预测新模型.运用自回归滑动平均模型生成脉动风速数据库,并将其分为训练集和测试集.采用ELM对训练集进行学习训练,建立回归模型,从而实现对测试集风速的泛化预测.经与基于粒子群优化(PSO)的混合核函... 提出基于极限学习机(ELM)的脉动风速预测新模型.运用自回归滑动平均模型生成脉动风速数据库,并将其分为训练集和测试集.采用ELM对训练集进行学习训练,建立回归模型,从而实现对测试集风速的泛化预测.经与基于粒子群优化(PSO)的混合核函数最小二乘支持向量(PSO-MK-LSSVM)和误差反传神经网络(PSO-BP)对比,验证了ELM模型的有效性.数值结果表明,与PSO-MK-LSSVM和PSO-BP相比,无论在预测精度还是计算速度上,ELM模型都具有显著的优势. 展开更多
关键词 极限学习机 脉动风速 预测 最小二乘支持向量机 误差反传神经网络
下载PDF
近红外光谱结合ELM快速检测固态发酵过程参数pH值 被引量:7
14
作者 刘国海 江辉 +3 位作者 肖夏宏 张东娟 梅从立 丁煜函 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第4期970-973,共4页
pH值是固态发酵过程关键参数之一,为此提出基于近红外光谱技术的秸秆蛋白饲料固态发酵过程参数pH值检测方法。利用近红外光谱系统获取140个固态发酵过程产物样本在10 000~4 000cm-1范围内的近红外光谱数据,通过酸度计测得近红外光谱预... pH值是固态发酵过程关键参数之一,为此提出基于近红外光谱技术的秸秆蛋白饲料固态发酵过程参数pH值检测方法。利用近红外光谱系统获取140个固态发酵过程产物样本在10 000~4 000cm-1范围内的近红外光谱数据,通过酸度计测得近红外光谱预测模型的参考测量值;运用ELM算法建立pH值的预测模型,在模型建立过程中由交互验证法确定最佳主成分因子数和ELM网络隐含层节点数。试验结果显示:最佳ELM网络模型的拓扑结构为10-40-1,模型预测集相关系数(Rp)和预测均方根误差(RMSEP)分别为0.961 8和0.104 4。研究结果可为固态发酵过程参数的在线检测提供技术基础。 展开更多
关键词 近红外光谱 主成分分析 极限学习机 PH 固态发酵
下载PDF
融合滞后极限学习机的IDBiLSTM短时交通流预测
15
作者 张阳 王梓良 +2 位作者 姚芳钰 许浩越 杨书敏 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期39-46,共8页
深度学习短时交通流预测中,存在数据处理实时性较弱,以及算法对交通流数据的复用和修正能力不足导致预测性能较差的问题。针对这一问题,提出一种融合滞后极限学习机的深度双向长短时记忆神经网络短时交通流预测方法。首先,引入权值共享... 深度学习短时交通流预测中,存在数据处理实时性较弱,以及算法对交通流数据的复用和修正能力不足导致预测性能较差的问题。针对这一问题,提出一种融合滞后极限学习机的深度双向长短时记忆神经网络短时交通流预测方法。首先,引入权值共享机制对双向长短时记忆网络模型进行结构优化,在模型训练过程中不断进行权重更新和偏置更新,从而充分利用逆序逆转数据增强数据的复用和修正能力;其次,为了进一步提高算法实时性,引入极限学习机模型,并在其神经元激活函数中嵌入生物神经系统中的滞后参数进行优化,加速了运算效率,提升算法的整体实时性。实验结果表明:提出的方法预测精度和算法实时性均有提升,与经典方法CNN-BiLSTM和多元集合CNN-LSTM相比,平均绝对误差分别减少了6.82、6.47,计算速度分别提高了12、19 s,具备良好的短时交通流预测能力和实时性。 展开更多
关键词 交通工程 深度学习 双向长短时记忆神经网络 极限学习机 交通预测
下载PDF
前交叉韧带断裂后足底压力特征的聚类分析 被引量:7
16
作者 李晓理 黄红拾 +2 位作者 王杰 于媛媛 敖英芳 《自动化学报》 EI CSCD 北大核心 2017年第3期418-429,共12页
运动过程中,人体的步态特征可以在足底压力图像上有准确的记录,而这也就可以成为判断步态正常与否的一条有效依据.通过一组压力传感器阵列获取人体运动过程的足底压力分布数据,提取步态的运动学和动力学特性.在此基础上,采用极限学习机(... 运动过程中,人体的步态特征可以在足底压力图像上有准确的记录,而这也就可以成为判断步态正常与否的一条有效依据.通过一组压力传感器阵列获取人体运动过程的足底压力分布数据,提取步态的运动学和动力学特性.在此基础上,采用极限学习机(Extreme learning machines,ELM)神经网络聚类算法对足底压力数据进行分析,完成正常与异常步态的分类辨识工作.本文从实际临床数据出发,对前交叉韧带断裂患者进行步态分析,并据医生的临床诊断结果进行校验.该方法在步态分析上取得了较为良好的效果,仿真结果表明了其有效性. 展开更多
关键词 足底压力 步态特征 极限学习机神经网络 前交叉韧带断裂 聚类分析
下载PDF
基于混合多变量经验模态分解和极限学习机的非平稳过程预测 被引量:6
17
作者 李春祥 张浩怡 《上海交通大学学报》 EI CAS CSCD 北大核心 2020年第4期376-386,共11页
传感器布置不足和传感器数据缺失是风压实测研究中需要解决的重要问题,风压的空间预测可以恢复缺失数据和拓展风压空间信息,帮助建立结构表面的风压分布.为此提出一种基于多变量经验模态分解(MEMD)和极限学习机(ELM)的空间预测算法.采用... 传感器布置不足和传感器数据缺失是风压实测研究中需要解决的重要问题,风压的空间预测可以恢复缺失数据和拓展风压空间信息,帮助建立结构表面的风压分布.为此提出一种基于多变量经验模态分解(MEMD)和极限学习机(ELM)的空间预测算法.采用MEMD分解非平稳信号,得到多组模态数目相同且频率匹配的固有模态函数和余项.对分解得到的数据按频率进行重组,作为输入数据,用ELM进行学习和预测.采用基于自回归滑动平均的模拟风速数据和实测非平稳风压数据来验证算法的有效性和精确度,同时引入基于径向基核函数的最小二乘支持向量机(RBF-LSSVM)和ELM方法作为对比.试验结果表明,MEMD-ELM方法的预测结果误差更小,与真实值更为接近.MEMD的多变量同时分解可以保留数据间的相关性,从而在非平稳过程空间预测时达到更好的效果,是一种稳定而有效的多变量预测方法. 展开更多
关键词 多变量经验模态分解 极限学习机 非平稳 预测
下载PDF
基于相近原则的半指导直推学习机及其增量算法 被引量:2
18
作者 龙卫江 张文修 《应用数学学报》 CSCD 北大核心 2006年第4期619-632,共14页
半指导问题是近来机器学习研究中的备受关注一个重要内容.本文以满足“在输入空间中相近的对象其输出也相近”这一源于直观事实的原则(相近原则)去解决半指导学习问题,给出在这个原则下的一个一般的直接推理方法—基于相近原则的半指... 半指导问题是近来机器学习研究中的备受关注一个重要内容.本文以满足“在输入空间中相近的对象其输出也相近”这一源于直观事实的原则(相近原则)去解决半指导学习问题,给出在这个原则下的一个一般的直接推理方法—基于相近原则的半指导问题直推学习机,得到了这个问题的解析解及迭代算法,用模式分类实例验证该方法的有效性,并给出适于在线处理的增量学习算法,这些增量算法尤其还适于新增了有指导的信息的场合. 展开更多
关键词 半指导学习 直推学习机 相近度量 增量算法
原文传递
血管性认知障碍早期预测机器学习模型的构建 被引量:3
19
作者 张倩 卞敏洁 +1 位作者 何琴 黄东锋 《中国康复理论与实践》 CSCD 北大核心 2021年第9期1072-1077,共6页
目的探索以血管性高危因素构建的机器学习模型早期预测血管性认知障碍的预测性能。方法2020年4月至9月,收集本院住院患者及陪护人员70例的人口学资料、血管性高危因素,行蒙特利尔认知评估量表(MoCA)评估,根据评估结果将受试者分为正常... 目的探索以血管性高危因素构建的机器学习模型早期预测血管性认知障碍的预测性能。方法2020年4月至9月,收集本院住院患者及陪护人员70例的人口学资料、血管性高危因素,行蒙特利尔认知评估量表(MoCA)评估,根据评估结果将受试者分为正常组、血管性轻度认知障碍(VaMCI)组和痴呆组;单因素方差分析筛选组间存在显著性差异的血管性高危因素,采用支持向量机(SVM)和极限学习机(ELM)构建预测模型;采用接受者操作特征曲线比较两种模型的预测性能。结果根据MoCA评估结果,正常组32例,VaMCI组23例,痴呆组15例;三组间收缩压、空腹血糖、总胆固醇、低密度脂蛋白、血尿酸有显著性差异(F>3.318,P<0.05);SVM模型预测VaMCI的曲线下面积最高,为0.911(P<0.01),SVM模型优于ELM模型。结论基于血管性高危因素构建的SVM预测模型优于ELM模型。 展开更多
关键词 血管性认知障碍 支持向量机 极限学习机 机器学习 预测模型
下载PDF
基于PLS-ELM的滚动轴承性能衰退预测 被引量:5
20
作者 王亚萍 周蓓 +2 位作者 白健弘 田卫明 葛江华 《振动.测试与诊断》 EI CSCD 北大核心 2020年第2期397-404,424,共9页
针对传统极限学习机预测滚动轴承故障时,存在信号模式混叠、人为参数选取造成预测精度低下的问题,提出了正态分布-经验小波变换变换结合偏最小二乘法的极限学习机(partial least squares-extreme learning machines,简称PLS-ELM)的故障... 针对传统极限学习机预测滚动轴承故障时,存在信号模式混叠、人为参数选取造成预测精度低下的问题,提出了正态分布-经验小波变换变换结合偏最小二乘法的极限学习机(partial least squares-extreme learning machines,简称PLS-ELM)的故障预测方法。首先,提出正态分布经验小波变换信号降噪方法,通过正态分布划分频率带界限,在各频率带上构建带通滤波器进行降噪;其次,提出PLS-ELM的故障预测方法,应用偏最小二乘法(partial least squares,简称PLS)中主成分数和加载权重分别改进极限学习机(extreme learning machines,简称ELM)隐含层节点数和网络权值,激活函数选取Softmax以提高数据的拟合精度;最后,应用无量纲指标峭度来反映故障程度,实现故障趋势预测。试验结果表明,该方法能够准确划分频谱和克服模式混叠等问题,并实现滚动轴承性能衰退趋势预测。 展开更多
关键词 滚动轴承 正态分布-经验小波变换 偏最小二乘法的极限学习机 性能衰退预测
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部