为了减少装配作业车间内因物料齐套产生的等待浪费,使具有装配约束的关联零件加工进度得到有效协同,设计一类卡片导航平衡控制系统(control of balance by card-based navigation,COBACABANA)。其基于两类卡片循环回路实现任务投放与作...为了减少装配作业车间内因物料齐套产生的等待浪费,使具有装配约束的关联零件加工进度得到有效协同,设计一类卡片导航平衡控制系统(control of balance by card-based navigation,COBACABANA)。其基于两类卡片循环回路实现任务投放与作业分派的可视化进度协同控制逻辑。本文详细介绍系统的运行机制和系统控制参量,通过构建一般化的装配作业车间仿真模型,探讨在不同装配关联度下各控制参量的性能变化。实验结果表明,COBACABANA系统性能良好,并且选择合适的控制参量就能够有效提升关联零件的进度协同性。展开更多
Respecting the on-time-delivery (OTD) for manufacturing orders is mandatory. This depends, however, on the probability distribution of incoming order rate. The case of non-equal distribution, such as aggregated arriva...Respecting the on-time-delivery (OTD) for manufacturing orders is mandatory. This depends, however, on the probability distribution of incoming order rate. The case of non-equal distribution, such as aggregated arrivals, may compromise the observance of on-time supplies for some orders. The purpose of this paper is to evaluate the conditions of post-optimality for stochastic order rate governed production systems in order to observe OTD. Instead of a heuristic or a simulative exploration, a Cartesian-based approach is applied to developing the necessary and sufficient mathematical condition to solve the problem statement. The research result demonstrates that increasing </span><span style="font-family:Verdana;">speed of throughput reveals a latent capacity, which allows arrival orders </span><span style="font-family:Verdana;">above capacity limits to be backlog-buffered and rescheduled for OTD, exploiting the virtual manufacturing elasticity inherent to all production systems to increase OTD reliability of non JIT-based production systems.展开更多
文摘为了减少装配作业车间内因物料齐套产生的等待浪费,使具有装配约束的关联零件加工进度得到有效协同,设计一类卡片导航平衡控制系统(control of balance by card-based navigation,COBACABANA)。其基于两类卡片循环回路实现任务投放与作业分派的可视化进度协同控制逻辑。本文详细介绍系统的运行机制和系统控制参量,通过构建一般化的装配作业车间仿真模型,探讨在不同装配关联度下各控制参量的性能变化。实验结果表明,COBACABANA系统性能良好,并且选择合适的控制参量就能够有效提升关联零件的进度协同性。
文摘Respecting the on-time-delivery (OTD) for manufacturing orders is mandatory. This depends, however, on the probability distribution of incoming order rate. The case of non-equal distribution, such as aggregated arrivals, may compromise the observance of on-time supplies for some orders. The purpose of this paper is to evaluate the conditions of post-optimality for stochastic order rate governed production systems in order to observe OTD. Instead of a heuristic or a simulative exploration, a Cartesian-based approach is applied to developing the necessary and sufficient mathematical condition to solve the problem statement. The research result demonstrates that increasing </span><span style="font-family:Verdana;">speed of throughput reveals a latent capacity, which allows arrival orders </span><span style="font-family:Verdana;">above capacity limits to be backlog-buffered and rescheduled for OTD, exploiting the virtual manufacturing elasticity inherent to all production systems to increase OTD reliability of non JIT-based production systems.