针对工业机器人工具中心点(Tool Center Point,TCP)标定,提出一种基于带二维测距功能标定工具板的标定方法。标定工具板能够感知机器人TCP的触碰,并测量任意两触点之间的距离。使机器人TCP与标定板触碰四次,并以触点形成的线段长度为坐...针对工业机器人工具中心点(Tool Center Point,TCP)标定,提出一种基于带二维测距功能标定工具板的标定方法。标定工具板能够感知机器人TCP的触碰,并测量任意两触点之间的距离。使机器人TCP与标定板触碰四次,并以触点形成的线段长度为坐标变换不变量为约束,建立TCP参数标定模型。该模型包括一个三元二次代数方程组,通过消元法可求出其所有可能解,并提出了真实解的判定方法。通过数值仿真,验证了所提出方法的可行性。以电阻触摸屏作为标定板为例,分析了标定板距离测量分辨率对标定精度的影响规律。以电阻屏为标定板进行了参数标定实验,证实了该方法的准确性。方法标定过程简单,易于实现自动化,适用于大多数工业机器人的工具坐标系的标定。展开更多
In applications such as marine rescue,marine science,archaeology,and offshore industries,autonomous underwater vehicles(AUVs)are frequently used for survey missions and monitoring tasks,with most operations being perf...In applications such as marine rescue,marine science,archaeology,and offshore industries,autonomous underwater vehicles(AUVs)are frequently used for survey missions and monitoring tasks,with most operations being performed by manned submersibles or remotely operated vehicles(ROVs)equipped with robotic arms,as they can be operated remotely for days without problems.However,they require expensive marine vessels and specialist pilots to operate them.Scientists exploring oceans are no longer satisfied with the use of manned submersibles and ROVs.There is a growing desire for seabed exploration to be performed using smarter,more flexible,and automated equipment.By improving the field operation and intervention capability of AUVs,large-scale and long-range seafloor exploration and sampling can be performed without the support of a mother ship,making it a more effective,economical,convenient,and rapid means of seafloor exploration and sampling operations,and playing a critical role in marine resource exploration.In this study,we explored the integration technology of underwater electric robotic arms and AUVs and designed a new set of electric manipulators suitable for water depths greater than 500 m.The reliability of the key components was analyzed by finite element analysis and,based on the theory of robot kinematics and dynamics,simulations were performed to verify the reliability of the key components.Experiments were conducted on land and underwater,trajectory tracking experiments were completed,and the experimental data in air and water were compared and analyzed.Finally,the objectives for further research on the autonomous control of the manipulator underwater were proposed.展开更多
文摘针对工业机器人工具中心点(Tool Center Point,TCP)标定,提出一种基于带二维测距功能标定工具板的标定方法。标定工具板能够感知机器人TCP的触碰,并测量任意两触点之间的距离。使机器人TCP与标定板触碰四次,并以触点形成的线段长度为坐标变换不变量为约束,建立TCP参数标定模型。该模型包括一个三元二次代数方程组,通过消元法可求出其所有可能解,并提出了真实解的判定方法。通过数值仿真,验证了所提出方法的可行性。以电阻触摸屏作为标定板为例,分析了标定板距离测量分辨率对标定精度的影响规律。以电阻屏为标定板进行了参数标定实验,证实了该方法的准确性。方法标定过程简单,易于实现自动化,适用于大多数工业机器人的工具坐标系的标定。
基金This work is supported by the Key Research and Development Program of Zhejiang Province(No.2021C03013),China.
文摘In applications such as marine rescue,marine science,archaeology,and offshore industries,autonomous underwater vehicles(AUVs)are frequently used for survey missions and monitoring tasks,with most operations being performed by manned submersibles or remotely operated vehicles(ROVs)equipped with robotic arms,as they can be operated remotely for days without problems.However,they require expensive marine vessels and specialist pilots to operate them.Scientists exploring oceans are no longer satisfied with the use of manned submersibles and ROVs.There is a growing desire for seabed exploration to be performed using smarter,more flexible,and automated equipment.By improving the field operation and intervention capability of AUVs,large-scale and long-range seafloor exploration and sampling can be performed without the support of a mother ship,making it a more effective,economical,convenient,and rapid means of seafloor exploration and sampling operations,and playing a critical role in marine resource exploration.In this study,we explored the integration technology of underwater electric robotic arms and AUVs and designed a new set of electric manipulators suitable for water depths greater than 500 m.The reliability of the key components was analyzed by finite element analysis and,based on the theory of robot kinematics and dynamics,simulations were performed to verify the reliability of the key components.Experiments were conducted on land and underwater,trajectory tracking experiments were completed,and the experimental data in air and water were compared and analyzed.Finally,the objectives for further research on the autonomous control of the manipulator underwater were proposed.