Hard carbon is the most promising anode for sodium-ion battery applications due to the wide availability and low work voltage.However,it often delivers worse electrochemical performance in ester-based electrolytes.Her...Hard carbon is the most promising anode for sodium-ion battery applications due to the wide availability and low work voltage.However,it often delivers worse electrochemical performance in ester-based electrolytes.Herein,a hierarchically porous loose sponge-like hard carbon with a highly disordered phase,prepared from the biomass of platanus bark,exhibits superior rate performance with a capacity of 165 mAh·g-1 at a high current of1 A·g-1,and high retention of 71.5%after 2000 cycles in an ester-based electrolyte.The effect of the hierarchically porous loose sponge-like structure on the formation dynamics of solid electrolyte interphase(SEI),and related properties,was studied via cyclic voltammetry(CV),galvanostatic intermittent titration technique(GITT),X-ray photoelectron spectroscope(XPS),Fourier transform infrared spectroscopy(FTIR)and electrochemical impedance spectroscopy(EIS)analysis.These results reveal that the hierarchically porous structure can construct continued connecting channels and accelerate the electrolyte transport,which is beneficial to the reaction kinetics of SEI.Moreover,the mesoporous structure is conducive to good contact between electrolyte and materials and shortens the Na+diffusion path,which in turn facilitates the charge transfer kinetics in the material.展开更多
Nickel-rich cathode materials have attracted considerable interest because of their high specific capacities,voltage ranges,and low cost.However,serious capacity attenuation and poor rate performance limit their appli...Nickel-rich cathode materials have attracted considerable interest because of their high specific capacities,voltage ranges,and low cost.However,serious capacity attenuation and poor rate performance limit their application.This study proposes a novel strategy to improve the cycle stability of the nickel-rich LiNi0.sCo0.1Mn0.1O2(NCM811)layer material by designing core-shell LiNio.sCoo.1 Mno.102(CS-NCM811).CS-NCM811 is designed by the characteristic reaction between dimethylglyoxime(C4H8N2O2)and nickel ion to form Ni(C4H7N2O2)2-The CS-NCM811 is characterized with high nickel content in its core and high manganese content on its surface,leading to a high capacity and excellent cycle stability.The capacity retention of CS-NCM811 was 72.8%,much higher than that of NCM811(47.1%)after 500 cycles at a rate of 5 C.Not only is this method a no vel strategy to desig n high capacity cathode materials but also provides some new in sights into the cycle stability of nickel-rich layered cathode materials.展开更多
Vanadium oxides with a layered structure are promising candidates for both lithium-ion batteries and sodium-ion batteries (SIBs). The self-template approach, which involves a transformation from metal-organic framew...Vanadium oxides with a layered structure are promising candidates for both lithium-ion batteries and sodium-ion batteries (SIBs). The self-template approach, which involves a transformation from metal-organic frameworks (MOFs) into porous metal oxides, is a novel and effective way to achieve desirable electrochemical performance. In this stud~ porous shuttle-like vanadium oxides (i.e., V205, V203/C) were successfully prepared by using MIL-88B (V) as precursors with a specific calcination process. As a proof-of-concept application, the as- prepared porous shuttle-like VaOdC was used as an anode material for SIBs. The porous shuttle-like V203/C, which had an inherent layered structure with metallic behavior, exhibited excellent electrochemical properties. Remarkable rate capacities of 417, 247, 202, 176, 164, and 149 mAh.g-1 were achieved at current densities of 50, 100, 200, 500, 1,000, and 2,000 mA.g-1, respectively. Under cycling at 2 A.g-1, the specific discharge capacity reached 181 mAh.g-1, with a low capacity fading rate of 0.032% per cycle after 1,000 cycles. Density functional theory calculation results indicated that Na ions preferred to occupy the interlamination rather than the inside of each layer in the V203. Interestingly, the special layered structure with a skeleton of dumbbell-like V-V bonds and metallic behavior was maintained after the insertion of Na ions, which was beneficial for the cycle performance. We consider that the MOF precursor of MIL-88B (V) can be used to synthesize other porous V-based materials for various applications.展开更多
A novel coordination polymer of [Co( p-CPOA)(2,2′-bipy)(H2O)]n ( p-CPOA2-=4-carboxylphenoxyacetate dianion, 2,2′-bipy=2,2′-bipyridine) was synthesized and characterized by elemental analysis, IR and X-ray single cr...A novel coordination polymer of [Co( p-CPOA)(2,2′-bipy)(H2O)]n ( p-CPOA2-=4-carboxylphenoxyacetate dianion, 2,2′-bipy=2,2′-bipyridine) was synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction. The title complex crystallizes in monoclinic space group C2/c, with a=1.424 4(3) nm, b=1.316 6(3) nm, c=1.947 7(4) nm, β=104.56(3)°. V=3.535 3(14) nm3, Z=8, R=0.028 5, wR=0.089 1. The cobalt(Ⅱ) ion displays a distorted octahedral coordination geometry, defined by three carboxyl oxygen atoms from different p-CPOA2- groups, two nitrogen atoms from 2,2′-bipyridine ligand and one water molecule. The cobalt atoms are bridged by p-CPOA2- groups, forming a one-dimensional chain structure along a axis. The adjacent Co...Co atoms distance is 0.996 8 nm. A layer supramolecular network is contrsucted by the hydrogen bonds and π-π stacking interactions. CCDC: 220039.展开更多
Corrosion,more specifically,pitting corrosion happening extremely in marine environments,leads to lifespan of materials drastically decreasing in service,which causes enormous economic loss and even environmental disa...Corrosion,more specifically,pitting corrosion happening extremely in marine environments,leads to lifespan of materials drastically decreasing in service,which causes enormous economic loss and even environmental disaster and casualties.In the past decade,increasing efforts have been made to study the corrosion behaviors of materials in chloride-containing aqueous environments.Herein,this work provides an overview of recent progress in understanding the degradation mechanism and improving the corrosion resistance and corrosion-wear resistance of materials from bulk metal to surface treatment involving organic coating,metal and its alloy or compound coating.The particular emphasis is given to the periodic layered structures(PLSs),whose anti-corrosion properties outperformed others to some extent,wherever in terms of bulk metal or surface treatment,regardless of aggressive environment(corrosion or corrosion-wear conditions).Numerical simulation based on kinds of models at different scales is introduced to deeply understand the process of corrosion and/or corrosion-wear in chloride-containing aqueous environment.Combined experimental result with numerical simulation,the micro-galvanic corrosion dominated degradation mechanism of PLSs is critically analyzed.Types of setups to realize corrosion-wear in laboratory are also summarized.At last,future research and development are prospected,offering to develop a basic application of PLSs designed by corrosion protection methodology in the near future.展开更多
Sodium-ion batteries(SIBs)have attracted significant attentions as promising alternatives to lithium-ion batteries for large-scale energy storage applications.Here carbon materials are considered as the most competiti...Sodium-ion batteries(SIBs)have attracted significant attentions as promising alternatives to lithium-ion batteries for large-scale energy storage applications.Here carbon materials are considered as the most competitive anodes for SIBs based on their low-cost,abundant availability and excellent structural stability.Pitch,with high carbon content and low cost,is an ideal raw precursor to prepare carbon materials for large-scale applications.Nevertheless,the microstructures of pitch-based carbon are highly ordered with smaller interlayer distances,which are unfavorable for Na ion storage.Many efforts have been made to improve the sodium storage performance of pitch-based carbon materials.This review summarizes the recent progress about the application of pitch-based carbons for SIBs anodes in the context of carbon’s morphology and structure regulation strategies,including morphology adjustment,heteroatoms doping,fabricating heterostructures,and the increase of the degree of disorder.Besides,the advantages,present challenges,and possible solutions to current issues in pitch-based carbon anode are discussed,with the highlight of future research directions.This review will provide a deep insight into the development of low-cost and high-performance pitch-based carbon anode for SIBs.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.U1804129,21771164,21671205 and U1804126)Zhongyuan Youth Talent Support Program of Henan Province and Zhengzhou University Youth Innovation Program。
文摘Hard carbon is the most promising anode for sodium-ion battery applications due to the wide availability and low work voltage.However,it often delivers worse electrochemical performance in ester-based electrolytes.Herein,a hierarchically porous loose sponge-like hard carbon with a highly disordered phase,prepared from the biomass of platanus bark,exhibits superior rate performance with a capacity of 165 mAh·g-1 at a high current of1 A·g-1,and high retention of 71.5%after 2000 cycles in an ester-based electrolyte.The effect of the hierarchically porous loose sponge-like structure on the formation dynamics of solid electrolyte interphase(SEI),and related properties,was studied via cyclic voltammetry(CV),galvanostatic intermittent titration technique(GITT),X-ray photoelectron spectroscope(XPS),Fourier transform infrared spectroscopy(FTIR)and electrochemical impedance spectroscopy(EIS)analysis.These results reveal that the hierarchically porous structure can construct continued connecting channels and accelerate the electrolyte transport,which is beneficial to the reaction kinetics of SEI.Moreover,the mesoporous structure is conducive to good contact between electrolyte and materials and shortens the Na+diffusion path,which in turn facilitates the charge transfer kinetics in the material.
文摘Nickel-rich cathode materials have attracted considerable interest because of their high specific capacities,voltage ranges,and low cost.However,serious capacity attenuation and poor rate performance limit their application.This study proposes a novel strategy to improve the cycle stability of the nickel-rich LiNi0.sCo0.1Mn0.1O2(NCM811)layer material by designing core-shell LiNio.sCoo.1 Mno.102(CS-NCM811).CS-NCM811 is designed by the characteristic reaction between dimethylglyoxime(C4H8N2O2)and nickel ion to form Ni(C4H7N2O2)2-The CS-NCM811 is characterized with high nickel content in its core and high manganese content on its surface,leading to a high capacity and excellent cycle stability.The capacity retention of CS-NCM811 was 72.8%,much higher than that of NCM811(47.1%)after 500 cycles at a rate of 5 C.Not only is this method a no vel strategy to desig n high capacity cathode materials but also provides some new in sights into the cycle stability of nickel-rich layered cathode materials.
文摘Vanadium oxides with a layered structure are promising candidates for both lithium-ion batteries and sodium-ion batteries (SIBs). The self-template approach, which involves a transformation from metal-organic frameworks (MOFs) into porous metal oxides, is a novel and effective way to achieve desirable electrochemical performance. In this stud~ porous shuttle-like vanadium oxides (i.e., V205, V203/C) were successfully prepared by using MIL-88B (V) as precursors with a specific calcination process. As a proof-of-concept application, the as- prepared porous shuttle-like VaOdC was used as an anode material for SIBs. The porous shuttle-like V203/C, which had an inherent layered structure with metallic behavior, exhibited excellent electrochemical properties. Remarkable rate capacities of 417, 247, 202, 176, 164, and 149 mAh.g-1 were achieved at current densities of 50, 100, 200, 500, 1,000, and 2,000 mA.g-1, respectively. Under cycling at 2 A.g-1, the specific discharge capacity reached 181 mAh.g-1, with a low capacity fading rate of 0.032% per cycle after 1,000 cycles. Density functional theory calculation results indicated that Na ions preferred to occupy the interlamination rather than the inside of each layer in the V203. Interestingly, the special layered structure with a skeleton of dumbbell-like V-V bonds and metallic behavior was maintained after the insertion of Na ions, which was beneficial for the cycle performance. We consider that the MOF precursor of MIL-88B (V) can be used to synthesize other porous V-based materials for various applications.
文摘A novel coordination polymer of [Co( p-CPOA)(2,2′-bipy)(H2O)]n ( p-CPOA2-=4-carboxylphenoxyacetate dianion, 2,2′-bipy=2,2′-bipyridine) was synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction. The title complex crystallizes in monoclinic space group C2/c, with a=1.424 4(3) nm, b=1.316 6(3) nm, c=1.947 7(4) nm, β=104.56(3)°. V=3.535 3(14) nm3, Z=8, R=0.028 5, wR=0.089 1. The cobalt(Ⅱ) ion displays a distorted octahedral coordination geometry, defined by three carboxyl oxygen atoms from different p-CPOA2- groups, two nitrogen atoms from 2,2′-bipyridine ligand and one water molecule. The cobalt atoms are bridged by p-CPOA2- groups, forming a one-dimensional chain structure along a axis. The adjacent Co...Co atoms distance is 0.996 8 nm. A layer supramolecular network is contrsucted by the hydrogen bonds and π-π stacking interactions. CCDC: 220039.
基金the financial supports from the National Natural Science Foundation of China(Nos.42066003,51701053)Hainan Provincial Natural Science Foundation of China(Nos.420RC522,517076)the Shanghai Synchrotron Radiation Facility,China(Nos.2018-SSRF-PT-003860,A01202001004).
文摘Corrosion,more specifically,pitting corrosion happening extremely in marine environments,leads to lifespan of materials drastically decreasing in service,which causes enormous economic loss and even environmental disaster and casualties.In the past decade,increasing efforts have been made to study the corrosion behaviors of materials in chloride-containing aqueous environments.Herein,this work provides an overview of recent progress in understanding the degradation mechanism and improving the corrosion resistance and corrosion-wear resistance of materials from bulk metal to surface treatment involving organic coating,metal and its alloy or compound coating.The particular emphasis is given to the periodic layered structures(PLSs),whose anti-corrosion properties outperformed others to some extent,wherever in terms of bulk metal or surface treatment,regardless of aggressive environment(corrosion or corrosion-wear conditions).Numerical simulation based on kinds of models at different scales is introduced to deeply understand the process of corrosion and/or corrosion-wear in chloride-containing aqueous environment.Combined experimental result with numerical simulation,the micro-galvanic corrosion dominated degradation mechanism of PLSs is critically analyzed.Types of setups to realize corrosion-wear in laboratory are also summarized.At last,future research and development are prospected,offering to develop a basic application of PLSs designed by corrosion protection methodology in the near future.
基金financially supported by the Beijing Municipal Science and Technology Commission(Grant No.Z181100004718007)the National Key R&D Program of China(Grant No.2017YFB0102204)。
文摘Sodium-ion batteries(SIBs)have attracted significant attentions as promising alternatives to lithium-ion batteries for large-scale energy storage applications.Here carbon materials are considered as the most competitive anodes for SIBs based on their low-cost,abundant availability and excellent structural stability.Pitch,with high carbon content and low cost,is an ideal raw precursor to prepare carbon materials for large-scale applications.Nevertheless,the microstructures of pitch-based carbon are highly ordered with smaller interlayer distances,which are unfavorable for Na ion storage.Many efforts have been made to improve the sodium storage performance of pitch-based carbon materials.This review summarizes the recent progress about the application of pitch-based carbons for SIBs anodes in the context of carbon’s morphology and structure regulation strategies,including morphology adjustment,heteroatoms doping,fabricating heterostructures,and the increase of the degree of disorder.Besides,the advantages,present challenges,and possible solutions to current issues in pitch-based carbon anode are discussed,with the highlight of future research directions.This review will provide a deep insight into the development of low-cost and high-performance pitch-based carbon anode for SIBs.