We report a type-I Ga Sb-based laterally coupled distributed-feedback(LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings...We report a type-I Ga Sb-based laterally coupled distributed-feedback(LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings are fabricated alongside the ridge waveguide by interference lithography. Index-coupled LC-DFB laser with a cavity of 1500 μm achieves single longitudinal mode continuous-wave operation at 20℃ with side mode suppression ratio(SMSR) as high as 24 dB.The maximum single mode continuous-wave output power is about 10 mW at room temperature(uncoated facet). A low threshold current density of 230 A/cm^2 is achieved with differential quantum efficiency estimated to be 93 mW/A. The laser shows a good wavelength stability against drive current and working temperature.展开更多
The use of an attenuated total reflection-coupling mode of prism coated with metal film to excite the interference of the surface plasmon polaritons (SPPs) was proposed for periodic patterning with a resolution of s...The use of an attenuated total reflection-coupling mode of prism coated with metal film to excite the interference of the surface plasmon polaritons (SPPs) was proposed for periodic patterning with a resolution of subwavelength scale. High intensity of electric field can be obtained because of the coupling between SPPs and evanescence under a resonance condition, which can reduce exposure time and improve contrast. In this paper, several critical parameters for maskless surface plasmon resonant lithography are described, and the preliminary simulation based on a finite difference timedomain technique agrees well with the theoretical analysis, which demonstrates this scheme and provides the theoretical basis for further experiments.展开更多
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2014CB643903 and 2013CB932904)the National Special Funds for the Development of Major Research Equipment and Instruments,China(Grant No.2012YQ140005)+1 种基金the National Natural Science Foundation of China(Grant Nos.61435012,61274013,61306088,and 61290303)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB01010200)
文摘We report a type-I Ga Sb-based laterally coupled distributed-feedback(LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings are fabricated alongside the ridge waveguide by interference lithography. Index-coupled LC-DFB laser with a cavity of 1500 μm achieves single longitudinal mode continuous-wave operation at 20℃ with side mode suppression ratio(SMSR) as high as 24 dB.The maximum single mode continuous-wave output power is about 10 mW at room temperature(uncoated facet). A low threshold current density of 230 A/cm^2 is achieved with differential quantum efficiency estimated to be 93 mW/A. The laser shows a good wavelength stability against drive current and working temperature.
基金supported by the National Basic Research of China (Grant No 2006CD302900-2)the National Natural Science Foundation of China (Grant No 60676024)the Specialized Research Fund of China for the Doctoral Program of Higher Education (Grant No 20060610006)
文摘The use of an attenuated total reflection-coupling mode of prism coated with metal film to excite the interference of the surface plasmon polaritons (SPPs) was proposed for periodic patterning with a resolution of subwavelength scale. High intensity of electric field can be obtained because of the coupling between SPPs and evanescence under a resonance condition, which can reduce exposure time and improve contrast. In this paper, several critical parameters for maskless surface plasmon resonant lithography are described, and the preliminary simulation based on a finite difference timedomain technique agrees well with the theoretical analysis, which demonstrates this scheme and provides the theoretical basis for further experiments.