Inflammatory cytokine storms can trigger disease exacerbation and even death and have reached a consensus in the clinical treatment of acute organ failure.However,the existing strategies remain a great challenge to ef...Inflammatory cytokine storms can trigger disease exacerbation and even death and have reached a consensus in the clinical treatment of acute organ failure.However,the existing strategies remain a great challenge to efficiently suppress inflammatory cytokine storms for promoting organ repair and regeneration.Herein,fully human umbilical cord(UC)-derived adhesive materials(UCAM)that integrate decellularized extracellular matrix(ECM)nanofiber hydrogel and homologous mesenchymal stem cells(MSCs)are demonstrated to greatly suppress inflammatory cytokine storms,demonstrating high efficacy in treating acute liver failure(ALF)in rats with 90%hepatectomy.The UC-derived adhesive materials have the capacity to secrete a significant quantity of cytokines by MSCs to recruit activated immune cells to migrate into their ECM nanofiber networks,segregating them away from the infection area and thereby greatly suppressing the inflammatory cytokine storms.As expected,the UC-derived adhesive materials can significantly promote hepatocyte proliferation to achieve functional recovery and regeneration of the liver,significantly improving the survival rate in rats.Our fully human UC-derived adhesive materials provide a new avenue in suppressing inflammatory cytokine storms for promoting organ regeneration that would be really utility in clinical organ transplantation-related treatment.展开更多
The evolution of membrane-type electronics has facilitated the development of stick-and-play systems,which confer diverse electrical functions to various planar or arbitrary curvilinear surfaces.The stick-and-play con...The evolution of membrane-type electronics has facilitated the development of stick-and-play systems,which confer diverse electrical functions to various planar or arbitrary curvilinear surfaces.The stick-and-play concept is based on the development of thin electronic devices in a printable format and their subsequent transfer to target surfaces.The development of this technology requires control of the interfacial adhesion of the electronic prints for retrieval from a carrier and transfer to the target surface.First,we discuss the transfer printing for membrane-type electronics,starting from an overview of materials available for flexible substrates,transfer printing of electronic prints for retrieval,and assembly for further integration.Second,we explain the stick-and-play concept based on fabricated membrane-type electronics;"stick" and “play"refer to the transfer of electronic devices and the performance of their electronic functions,respectively.In particular,we broadly survey various methods based on micro/nanostructures,including gecko-inspired,interlocking,cephalopod-sucker-inspired,and cilia structures,which can be employed to stick-and-play systems for enhancing interfacial adhesion with complex target surfaces under dynamic and wet conditions.Finally,we highlight the stick-and-play system application of micro/nanostructures for skin-attachable biomedical electronics,e-textiles,and environmental monitoring electronics.展开更多
基金support by the National Key R&D Program of China (2022YFA1104900,2022YFA0806301)the National Natural Science Foundation of China (22075127,31972926,82371725,and 32301204)the Guangdong Key Research and Develop-ment Plan (2019B020234003).
文摘Inflammatory cytokine storms can trigger disease exacerbation and even death and have reached a consensus in the clinical treatment of acute organ failure.However,the existing strategies remain a great challenge to efficiently suppress inflammatory cytokine storms for promoting organ repair and regeneration.Herein,fully human umbilical cord(UC)-derived adhesive materials(UCAM)that integrate decellularized extracellular matrix(ECM)nanofiber hydrogel and homologous mesenchymal stem cells(MSCs)are demonstrated to greatly suppress inflammatory cytokine storms,demonstrating high efficacy in treating acute liver failure(ALF)in rats with 90%hepatectomy.The UC-derived adhesive materials have the capacity to secrete a significant quantity of cytokines by MSCs to recruit activated immune cells to migrate into their ECM nanofiber networks,segregating them away from the infection area and thereby greatly suppressing the inflammatory cytokine storms.As expected,the UC-derived adhesive materials can significantly promote hepatocyte proliferation to achieve functional recovery and regeneration of the liver,significantly improving the survival rate in rats.Our fully human UC-derived adhesive materials provide a new avenue in suppressing inflammatory cytokine storms for promoting organ regeneration that would be really utility in clinical organ transplantation-related treatment.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.2018R1A2B2005067)and GIST Research Institute(GRI)grant funded by the GIST in 2020.
文摘The evolution of membrane-type electronics has facilitated the development of stick-and-play systems,which confer diverse electrical functions to various planar or arbitrary curvilinear surfaces.The stick-and-play concept is based on the development of thin electronic devices in a printable format and their subsequent transfer to target surfaces.The development of this technology requires control of the interfacial adhesion of the electronic prints for retrieval from a carrier and transfer to the target surface.First,we discuss the transfer printing for membrane-type electronics,starting from an overview of materials available for flexible substrates,transfer printing of electronic prints for retrieval,and assembly for further integration.Second,we explain the stick-and-play concept based on fabricated membrane-type electronics;"stick" and “play"refer to the transfer of electronic devices and the performance of their electronic functions,respectively.In particular,we broadly survey various methods based on micro/nanostructures,including gecko-inspired,interlocking,cephalopod-sucker-inspired,and cilia structures,which can be employed to stick-and-play systems for enhancing interfacial adhesion with complex target surfaces under dynamic and wet conditions.Finally,we highlight the stick-and-play system application of micro/nanostructures for skin-attachable biomedical electronics,e-textiles,and environmental monitoring electronics.