This paper shows how a desktop simulation can be migrated into its cloud equivalence using Windows Azure. It is undeniable that simulators are expensive and cost-intensive regarding maintenance and upgrading, and thus...This paper shows how a desktop simulation can be migrated into its cloud equivalence using Windows Azure. It is undeniable that simulators are expensive and cost-intensive regarding maintenance and upgrading, and thus, it is not always feasible to buy such a simulator. Therefore, it will be of great significance if we have an approach, which provides simulators with services through the Internet with the aim of making them accessible from anywhere and at any time. That is, researchers and developers can focus on their actual researches and experiments and the intended output results. The cloud simulation infrastructure of this contribution is capable of hosting different simulations with the ability to be cloned as cloud services. The simulator example used here mimics the process of a distillation column to be seen as a widely used plant in several industrial applications. The cloud simulation core embedded in the cloud environment is fully independent from the developed user-interface of the simulator meaning that the cloud simulator can be connected to any user-interface. This allows simulation users such as process control and alarm management designers to connect to the cloud simulator in order to design, develop and experiment their systems on a “pay-as-you-go” basis as it is the case of most cloud computing services, aimed at providing computing services as utilities like water and electricity. For coding convenience, Windows Azure was selected for both developing the cloud simulation and hosting it in the cloud because of the fact that the source code of the desktop simulator is already available in C# based on dot Net technology. From a software technical point of view, UML graphical notations were applied in order to express the software requirement specifications of the distributed cloud simulation, representing a widespread technology in the object-oriented design and analysis.展开更多
Today, the growth of aerospace industry has led to the development of modular overhead systems that can be applied to a wide variety of aircraft.?It actually maximizes training effectiveness by working in a similar wa...Today, the growth of aerospace industry has led to the development of modular overhead systems that can be applied to a wide variety of aircraft.?It actually maximizes training effectiveness by working in a similar way as to the real aircraft maneuverability. Overhead system control device for aircraft simulator is developed as a module and integrated to the flight simulator. The developed system can replace the similar products imported from overseas at a much lower price, about one third of the imports, while maintaining the same level of functionality and the performance with the counterparts. This price advantage is the main motivation of this development, which is expected to enlarge the commercial training simulator market in our country. This development has been also funded by the government, and we invited several commercial airline pilots to test the equipment. The post operation interview revealed that the developed system at least matches or exceeds the performance of the imported products. With the development completed, it is ready for the commercial production and will help promote the expansion of flight training education at various aerospace universities in Korea.展开更多
文摘This paper shows how a desktop simulation can be migrated into its cloud equivalence using Windows Azure. It is undeniable that simulators are expensive and cost-intensive regarding maintenance and upgrading, and thus, it is not always feasible to buy such a simulator. Therefore, it will be of great significance if we have an approach, which provides simulators with services through the Internet with the aim of making them accessible from anywhere and at any time. That is, researchers and developers can focus on their actual researches and experiments and the intended output results. The cloud simulation infrastructure of this contribution is capable of hosting different simulations with the ability to be cloned as cloud services. The simulator example used here mimics the process of a distillation column to be seen as a widely used plant in several industrial applications. The cloud simulation core embedded in the cloud environment is fully independent from the developed user-interface of the simulator meaning that the cloud simulator can be connected to any user-interface. This allows simulation users such as process control and alarm management designers to connect to the cloud simulator in order to design, develop and experiment their systems on a “pay-as-you-go” basis as it is the case of most cloud computing services, aimed at providing computing services as utilities like water and electricity. For coding convenience, Windows Azure was selected for both developing the cloud simulation and hosting it in the cloud because of the fact that the source code of the desktop simulator is already available in C# based on dot Net technology. From a software technical point of view, UML graphical notations were applied in order to express the software requirement specifications of the distributed cloud simulation, representing a widespread technology in the object-oriented design and analysis.
文摘Today, the growth of aerospace industry has led to the development of modular overhead systems that can be applied to a wide variety of aircraft.?It actually maximizes training effectiveness by working in a similar way as to the real aircraft maneuverability. Overhead system control device for aircraft simulator is developed as a module and integrated to the flight simulator. The developed system can replace the similar products imported from overseas at a much lower price, about one third of the imports, while maintaining the same level of functionality and the performance with the counterparts. This price advantage is the main motivation of this development, which is expected to enlarge the commercial training simulator market in our country. This development has been also funded by the government, and we invited several commercial airline pilots to test the equipment. The post operation interview revealed that the developed system at least matches or exceeds the performance of the imported products. With the development completed, it is ready for the commercial production and will help promote the expansion of flight training education at various aerospace universities in Korea.