Blood vessels are essential for nutrient and oxygen delivery and waste removal.Scaffold-repairing materials with functional vascular networks are widely used in bone tissue engineering.Additive manufacturing is a manu...Blood vessels are essential for nutrient and oxygen delivery and waste removal.Scaffold-repairing materials with functional vascular networks are widely used in bone tissue engineering.Additive manufacturing is a manufacturing technology that creates three-dimensional solids by stacking substances layer by layer,mainly including but not limited to 3D printing,but also 4D printing,5D printing and 6D printing.It can be effectively combined with vascularization to meet the needs of vascularized tissue scaffolds by precisely tuning the mechanical structure and biological properties of smart vascular scaffolds.Herein,the development of neovascularization to vascularization to bone tissue engineering is systematically discussed in terms of the importance of vascularization to the tissue.Additionally,the research progress and future prospects of vascularized 3D printed scaffold materials are highlighted and presented in four categories:functional vascularized 3D printed scaffolds,cell-based vascularized 3D printed scaffolds,vascularized 3D printed scaffolds loaded with specific carriers and bionic vascularized 3D printed scaffolds.Finally,a brief review of vascularized additive manufacturing-tissue scaffolds in related tissues such as the vascular tissue engineering,cardiovascular system,skeletal muscle,soft tissue and a discussion of the challenges and development efforts leading to significant advances in intelligent vascularized tissue regeneration is presented.展开更多
Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest benef...Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.展开更多
By reviewing the current status of drilling fluid technologies with primary intelligence features at home and abroad,the development background and intelligent response mechanisms of drilling fluid technologies such a...By reviewing the current status of drilling fluid technologies with primary intelligence features at home and abroad,the development background and intelligent response mechanisms of drilling fluid technologies such as variable density,salt response,reversible emulsification,constant rheology,shape memory loss prevention and plugging,intelligent reservoir protection and in-situ rheology control are elaborated,current issues and future challenges are analyzed,and it is pointed out that intelligent material science,nanoscience and artificial intelligence theory are important methods for future research of intelligent drilling fluid technology of horizontal wells with more advanced intelligent features of"self-identification,self-tuning and self-adaptation".Based on the aforementioned outline and integrated with the demands from the drilling fluid technology and intelligent drilling fluid theory,three development suggestions are put forward:(1)research and develop intelligent drilling fluids responding to variable formation pressure,variable formation lithology and fluid,variable reservoir characteristics,high temperature formation and complex ground environmental protection needs;(2)establish an expert system for intelligent drilling fluid design and management;and(3)establish a real-time intelligent check and maintenance processing network.展开更多
基金supported by grants from the National Key Research and Development Program of China (2020YFA0908200)Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20171906)+2 种基金Shanghai Municipal Health and Family Planning Commission (2022XD055)Natural Science Foundation of Shandong Province (Shandong) (ZR2020QH121)GuangCi Professorship Program of Ruijin Hospital Shanghai Jiao Tong University School of Medicine
文摘Blood vessels are essential for nutrient and oxygen delivery and waste removal.Scaffold-repairing materials with functional vascular networks are widely used in bone tissue engineering.Additive manufacturing is a manufacturing technology that creates three-dimensional solids by stacking substances layer by layer,mainly including but not limited to 3D printing,but also 4D printing,5D printing and 6D printing.It can be effectively combined with vascularization to meet the needs of vascularized tissue scaffolds by precisely tuning the mechanical structure and biological properties of smart vascular scaffolds.Herein,the development of neovascularization to vascularization to bone tissue engineering is systematically discussed in terms of the importance of vascularization to the tissue.Additionally,the research progress and future prospects of vascularized 3D printed scaffold materials are highlighted and presented in four categories:functional vascularized 3D printed scaffolds,cell-based vascularized 3D printed scaffolds,vascularized 3D printed scaffolds loaded with specific carriers and bionic vascularized 3D printed scaffolds.Finally,a brief review of vascularized additive manufacturing-tissue scaffolds in related tissues such as the vascular tissue engineering,cardiovascular system,skeletal muscle,soft tissue and a discussion of the challenges and development efforts leading to significant advances in intelligent vascularized tissue regeneration is presented.
基金supported by National R&D Program through the NRF funded by Ministry of Science and ICT(2021M3D1A2049315)and the Technology Innovation Program(20021909,Development of H2 gas detection films(?0.1%)and process technologies)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)supported by the Basic Science Program through the NRF of Korea,funded by the Ministry of Science and ICT,Korea.(Project Number:NRF-2022R1C1C1008845)supported by Basic Science Research Program through the NRF funded by the Ministry of Education(Project Number:NRF-2022R1A6A3A13073158)。
文摘Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.
基金Supported by National Natural Science Foundation of Innovative Research Groups(51521063)Major Project of National Natural Science Foundation of China(51991361)。
文摘By reviewing the current status of drilling fluid technologies with primary intelligence features at home and abroad,the development background and intelligent response mechanisms of drilling fluid technologies such as variable density,salt response,reversible emulsification,constant rheology,shape memory loss prevention and plugging,intelligent reservoir protection and in-situ rheology control are elaborated,current issues and future challenges are analyzed,and it is pointed out that intelligent material science,nanoscience and artificial intelligence theory are important methods for future research of intelligent drilling fluid technology of horizontal wells with more advanced intelligent features of"self-identification,self-tuning and self-adaptation".Based on the aforementioned outline and integrated with the demands from the drilling fluid technology and intelligent drilling fluid theory,three development suggestions are put forward:(1)research and develop intelligent drilling fluids responding to variable formation pressure,variable formation lithology and fluid,variable reservoir characteristics,high temperature formation and complex ground environmental protection needs;(2)establish an expert system for intelligent drilling fluid design and management;and(3)establish a real-time intelligent check and maintenance processing network.