Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic sy...Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic system have been well explored and their applications to the pseudodynamic testing of a nonlinear system have been shown to be feasible. However, their numerical properties in the solution of a nonlinear system are not apparent. Therefore, the performance of both algorithms for use in the solution of a nonlinear system has been analytically evaluated after introducing an instantaneous degree of nonlinearity. The two algorithms have roughly the same accuracy for a small value of the product of the natural frequency and step size. Meanwhile, the first algorithm is unconditionally stable when the instantaneous degree of nonlinearity is less than or equal to 1, and it becomes conditionally stable when it is greater than 1. The second algorithm is conditionally stable as the instantaneous degree of nonlinearity is less than 1/9, and becomes unstable when it is greater than 1. It can have unconditional stability for the range between 1/9 and 1. Based on these evaluations, it was concluded that the first algorithm is superior to the second one. Also, both algorithms were found to require commensurate computational efforts, which are much less than needed for the Newmark explicit method in general structural dynamic problems.展开更多
基金Science Council,Chinese Taipei,Under Grant No. NSC-96-2211-E-027-030
文摘Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic system have been well explored and their applications to the pseudodynamic testing of a nonlinear system have been shown to be feasible. However, their numerical properties in the solution of a nonlinear system are not apparent. Therefore, the performance of both algorithms for use in the solution of a nonlinear system has been analytically evaluated after introducing an instantaneous degree of nonlinearity. The two algorithms have roughly the same accuracy for a small value of the product of the natural frequency and step size. Meanwhile, the first algorithm is unconditionally stable when the instantaneous degree of nonlinearity is less than or equal to 1, and it becomes conditionally stable when it is greater than 1. The second algorithm is conditionally stable as the instantaneous degree of nonlinearity is less than 1/9, and becomes unstable when it is greater than 1. It can have unconditional stability for the range between 1/9 and 1. Based on these evaluations, it was concluded that the first algorithm is superior to the second one. Also, both algorithms were found to require commensurate computational efforts, which are much less than needed for the Newmark explicit method in general structural dynamic problems.