为提高短期风电功率预测精度,缩短模型训练时间,提出了一种短期风电功率集成预测方法。根据风速功率曲线和风速频率特征,将风速划分为高、中、低三段,并对每段的风速功率特征进行统计分析。高、低风速段功率波动较大,使用最小二乘支持...为提高短期风电功率预测精度,缩短模型训练时间,提出了一种短期风电功率集成预测方法。根据风速功率曲线和风速频率特征,将风速划分为高、中、低三段,并对每段的风速功率特征进行统计分析。高、低风速段功率波动较大,使用最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)方法可取得较高的预测精度。中风速段风速数据点较多,且风速和功率有明显的物理关系,使用高斯(Gaussian)模型预测。并用风速功率等级表对各段预测的结果进行订正,保证了算法的稳定性。用上海某风电场2014年的历史数据,验证了Gaussian模型以及高、中、低风速段对应的预测算法选取的合理性。与LSSVM预测方法相比较,集成预测方法既提高了预测精度又缩短了预测时间,适合风电场短期功率的实时预测。展开更多
文摘为提高短期风电功率预测精度,缩短模型训练时间,提出了一种短期风电功率集成预测方法。根据风速功率曲线和风速频率特征,将风速划分为高、中、低三段,并对每段的风速功率特征进行统计分析。高、低风速段功率波动较大,使用最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)方法可取得较高的预测精度。中风速段风速数据点较多,且风速和功率有明显的物理关系,使用高斯(Gaussian)模型预测。并用风速功率等级表对各段预测的结果进行订正,保证了算法的稳定性。用上海某风电场2014年的历史数据,验证了Gaussian模型以及高、中、低风速段对应的预测算法选取的合理性。与LSSVM预测方法相比较,集成预测方法既提高了预测精度又缩短了预测时间,适合风电场短期功率的实时预测。