Oscillator strengths and cross sections of the valence-shell excitations in NO_(2)are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth’s atmospher...Oscillator strengths and cross sections of the valence-shell excitations in NO_(2)are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth’s atmosphere. In the present work, the generalized oscillator strengths of the valence-shell excitations in NO_(2)were obtained based on the fast electron scattering technique at an incident electron energy of 1.5 ke V and an energy resolution of about 70 me V. By extrapolating the generalized oscillator strengths to the limit of a zero squared momentum transfer, the optical oscillator strengths for the dipole-allowed transitions have been obtained, which provide an independent cross check to the previous experimental results. Based on the BE-scaling method, the corresponding integral cross sections have also been derived systematically from the excitation threshold to 5000 eV. The present dynamic parameters can provide the fundamental spectroscopic data of NO_(2)and have important applications in the studies of atmospheric science. The datasets presented in this paper, including the GOSs, OOSs and ICSs, are openly available at https://doi.org/10.57760/sciencedb.j00113.00156.展开更多
A global potential energy surface(PES)of the ground state of SiH_(2)^(+) system is built by using neural network method based on 18223 ab initio points.The topographic properties of PES are presented and compared with...A global potential energy surface(PES)of the ground state of SiH_(2)^(+) system is built by using neural network method based on 18223 ab initio points.The topographic properties of PES are presented and compared with previous theoretical and experimental studies.The results indicate that the spectroscopic parameters obtained from the new PES are in good agreement with the experimental data.In order to further verify the validity of the new PES,a test dynamics calculation of the Si^(+)+H_(2)(v_(0)=2,j_(0)=0)→H+SiH^(+)reaction has been carried out by using the time-dependent wave packet method.The integral cross sections and rate constants are computed for the title reaction.The reasonable dynamical behavior indicates that the newly constructed PES is suitable for relevant dynamics investigations.展开更多
The time-dependent wave packet propagation method was applied to investigate the dynamic behaviours of the reaction S-(^(2)P)+H_(2)(^(1)∑_(g)^(+))→SH-(^(1)∑)+H(^(2)S)based on the electronic ground state(^(2)A′)pot...The time-dependent wave packet propagation method was applied to investigate the dynamic behaviours of the reaction S-(^(2)P)+H_(2)(^(1)∑_(g)^(+))→SH-(^(1)∑)+H(^(2)S)based on the electronic ground state(^(2)A′)potential energy surface of the SH_(2)-ionic molecule.The collision energy dependent reaction probabilities and integral cross sections are obtained.The numerical results suggest that there are significant oscillation structures over all the studied range of the collision energies.The vibrational excitation and rotational excitation of the diatomic reagent H_(2) promote the reactivity significantly as suggested by the numerical total reaction probabilities with the initial rotational quantum number of j=0,2,4,6,8,10,and the vibrational quantum number v=0,1,2,3,4.The numerical integral cross sections are quite consistent with the experimental data reported in previous work.展开更多
Electron-impact excitation integral cross sections play an important role in understanding the energy transfer processes in many applied physics. Practical applications require integral cross sections in a wide collis...Electron-impact excitation integral cross sections play an important role in understanding the energy transfer processes in many applied physics. Practical applications require integral cross sections in a wide collision energy range from the excitation threshold to several ke V. The recently developed BE-scaling method is able to meet the demands of integral cross sections for dipole-allowed transitions while the prerequisite relies on the accurate generalized oscillator strengths. Fast electron and x-ray scatterings are the conventional experimental techniques to approach the generalized oscillator strengths,and the joint study by both methods can provide credible cross-checks. The validated generalized oscillator strengths can then be used to extrapolate optical oscillator strengths by fitting the data with the Lassettre formula. The fitted curve also enables the integration of generalized oscillator strengths over the whole momentum transfer region to obtain the BE-scaled integral excitation cross sections. Here, experimental measurements by both fast electron and x-ray scattering of argon and carbon dioxide are reviewed. The integral cross sections for some low-lying states are derived from the cross-checked generalized oscillator strengths for the first time. The integral cross sections presented in this paper are openly available at https://doi.org/10.11922/sciencedb.01466.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500)the National Natural Science Foundation of China (Grant Nos. 12334010 and U1932207)。
文摘Oscillator strengths and cross sections of the valence-shell excitations in NO_(2)are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth’s atmosphere. In the present work, the generalized oscillator strengths of the valence-shell excitations in NO_(2)were obtained based on the fast electron scattering technique at an incident electron energy of 1.5 ke V and an energy resolution of about 70 me V. By extrapolating the generalized oscillator strengths to the limit of a zero squared momentum transfer, the optical oscillator strengths for the dipole-allowed transitions have been obtained, which provide an independent cross check to the previous experimental results. Based on the BE-scaling method, the corresponding integral cross sections have also been derived systematically from the excitation threshold to 5000 eV. The present dynamic parameters can provide the fundamental spectroscopic data of NO_(2)and have important applications in the studies of atmospheric science. The datasets presented in this paper, including the GOSs, OOSs and ICSs, are openly available at https://doi.org/10.57760/sciencedb.j00113.00156.
基金supported by Key Projects of Science and Technology in the 13th Five Year Plan of Jilin Provincial Department of Education,China(Grant No.JJKH20200482KJ)。
文摘A global potential energy surface(PES)of the ground state of SiH_(2)^(+) system is built by using neural network method based on 18223 ab initio points.The topographic properties of PES are presented and compared with previous theoretical and experimental studies.The results indicate that the spectroscopic parameters obtained from the new PES are in good agreement with the experimental data.In order to further verify the validity of the new PES,a test dynamics calculation of the Si^(+)+H_(2)(v_(0)=2,j_(0)=0)→H+SiH^(+)reaction has been carried out by using the time-dependent wave packet method.The integral cross sections and rate constants are computed for the title reaction.The reasonable dynamical behavior indicates that the newly constructed PES is suitable for relevant dynamics investigations.
基金supported by Liao Ning Revitalization Talents Program(No.XLYC2007094)the Liaoning Bai Qian Wan Talents Program,the Natural Science Foundation of Liaoning Province(No.2020-BS083)the National Natural Science Foundation of China(No.11874241)。
文摘The time-dependent wave packet propagation method was applied to investigate the dynamic behaviours of the reaction S-(^(2)P)+H_(2)(^(1)∑_(g)^(+))→SH-(^(1)∑)+H(^(2)S)based on the electronic ground state(^(2)A′)potential energy surface of the SH_(2)-ionic molecule.The collision energy dependent reaction probabilities and integral cross sections are obtained.The numerical results suggest that there are significant oscillation structures over all the studied range of the collision energies.The vibrational excitation and rotational excitation of the diatomic reagent H_(2) promote the reactivity significantly as suggested by the numerical total reaction probabilities with the initial rotational quantum number of j=0,2,4,6,8,10,and the vibrational quantum number v=0,1,2,3,4.The numerical integral cross sections are quite consistent with the experimental data reported in previous work.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)the National Natural Science Foundation of China(Grant Nos.U1932207 and 12104437)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34000000)The financial support from the Heavy Ion Research Facility in Lanzhou(HIRFL)。
文摘Electron-impact excitation integral cross sections play an important role in understanding the energy transfer processes in many applied physics. Practical applications require integral cross sections in a wide collision energy range from the excitation threshold to several ke V. The recently developed BE-scaling method is able to meet the demands of integral cross sections for dipole-allowed transitions while the prerequisite relies on the accurate generalized oscillator strengths. Fast electron and x-ray scatterings are the conventional experimental techniques to approach the generalized oscillator strengths,and the joint study by both methods can provide credible cross-checks. The validated generalized oscillator strengths can then be used to extrapolate optical oscillator strengths by fitting the data with the Lassettre formula. The fitted curve also enables the integration of generalized oscillator strengths over the whole momentum transfer region to obtain the BE-scaled integral excitation cross sections. Here, experimental measurements by both fast electron and x-ray scattering of argon and carbon dioxide are reviewed. The integral cross sections for some low-lying states are derived from the cross-checked generalized oscillator strengths for the first time. The integral cross sections presented in this paper are openly available at https://doi.org/10.11922/sciencedb.01466.