Interposers with through-silicon vias(TSVs)play a key role in the three-dimensional integration and packaging of integrated circuits and microelectromechanical systems.In the current practice of fabricating interposer...Interposers with through-silicon vias(TSVs)play a key role in the three-dimensional integration and packaging of integrated circuits and microelectromechanical systems.In the current practice of fabricating interposers,solder balls are placed next to the vias;however,this approach requires a large foot print for the input/output(I/O)connections.Therefore,in this study,we investigate the possibility of placing the solder balls directly on top of the vias,thereby enabling a smaller pitch between the solder balls and an increased density of the I/O connections.To reach this goal,inkjet printing(that is,piezo and super inkjet)was used to successfully fill and planarize hollow metal TSVs with a dielectric polymer.The under bump metallization(UBM)pads were also successfully printed with inkjet technology on top of the polymer-filled vias,using either Ag or Au inks.The reliability of the TSV interposers was investigated by a temperature cycling stress test(−40℃ to+125℃).The stress test showed no impact on DC resistance of the TSVs;however,shrinkage and delamination of the polymer was observed,along with some micro-cracks in the UBM pads.For proof of concept,SnAgCu-based solder balls were jetted on the UBM pads.展开更多
The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, construct...The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling(LEM) and the artificial bee colony(ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model(DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.展开更多
Inkjet priming (IJP) is a versatile technique for realizing high-accuracy patterns in a cost-effective manner. It is considered to be one of the most promising candidates to replace the expensive thermal evaporation...Inkjet priming (IJP) is a versatile technique for realizing high-accuracy patterns in a cost-effective manner. It is considered to be one of the most promising candidates to replace the expensive thermal evaporation technique, which is hindered by the difficulty of fabricating low-cost, large electroluminescent devices, such as organic light- emitting diodes (OLEDs) and quantum dot light-emitting diodes (QLEDs). In this invited review, we first introduce the recent progress of some printable emissive materials, including polymers, small molecules, and inorganic colloidal quantum dot emitters in OLEDs and QLEDs. Subsequently, we focus on the key factors that influence film formation. By exploring stable ink formulation, selecting print parameters, and implementing droplet deposition control, a uniform film can be obtained, which in turn improves the device performance. Finally, a series of impressive inkjet-printed OLEDs and QLEDs prototype display panels are summarized, suggesting a promising future for IJP in the fabrication of large and high-resolution flat panel displays.展开更多
基金This work is supported by ENIAC-JU Project Prominent Grant No 324189 and Tekes Grant No.40336/12 and Vinnova Grants Nos.2012-04301,2012-04287,and 2012-04314MM is supported by the Academy of Finland Grant Nos.288945 and 294119The work of Silex and KTH was funded in part through an Industrial Ph.D.grant from the Swedish Foundation for Strategic Research(SSF),Grant No.ID14-0033.
文摘Interposers with through-silicon vias(TSVs)play a key role in the three-dimensional integration and packaging of integrated circuits and microelectromechanical systems.In the current practice of fabricating interposers,solder balls are placed next to the vias;however,this approach requires a large foot print for the input/output(I/O)connections.Therefore,in this study,we investigate the possibility of placing the solder balls directly on top of the vias,thereby enabling a smaller pitch between the solder balls and an increased density of the I/O connections.To reach this goal,inkjet printing(that is,piezo and super inkjet)was used to successfully fill and planarize hollow metal TSVs with a dielectric polymer.The under bump metallization(UBM)pads were also successfully printed with inkjet technology on top of the polymer-filled vias,using either Ag or Au inks.The reliability of the TSV interposers was investigated by a temperature cycling stress test(−40℃ to+125℃).The stress test showed no impact on DC resistance of the TSVs;however,shrinkage and delamination of the polymer was observed,along with some micro-cracks in the UBM pads.For proof of concept,SnAgCu-based solder balls were jetted on the UBM pads.
基金Projects(2014AA052101-3,2014AA052102)supported by the National High Technology Research and Development Program of ChinaProjects(51205389,61105067)supported by the National Natural Science Foundation of China
文摘The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand(Do D) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling(LEM) and the artificial bee colony(ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model(DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.
文摘Inkjet priming (IJP) is a versatile technique for realizing high-accuracy patterns in a cost-effective manner. It is considered to be one of the most promising candidates to replace the expensive thermal evaporation technique, which is hindered by the difficulty of fabricating low-cost, large electroluminescent devices, such as organic light- emitting diodes (OLEDs) and quantum dot light-emitting diodes (QLEDs). In this invited review, we first introduce the recent progress of some printable emissive materials, including polymers, small molecules, and inorganic colloidal quantum dot emitters in OLEDs and QLEDs. Subsequently, we focus on the key factors that influence film formation. By exploring stable ink formulation, selecting print parameters, and implementing droplet deposition control, a uniform film can be obtained, which in turn improves the device performance. Finally, a series of impressive inkjet-printed OLEDs and QLEDs prototype display panels are summarized, suggesting a promising future for IJP in the fabrication of large and high-resolution flat panel displays.