In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium ap...In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium approach. The factor of safety relating to each trial slip surface is calculated using a simplified algorithm of the Morgenstern-Price method, which satisfies both the force and the moment equilibriums. General slip surface is considered non-circular in this study that is constituted by linking random straight lines.To explore the performance of the proposed algorithm, four benchmark test problems are analyzed. The results demonstrate that the present techniques can provide reliable, accurate and efficient solutions for locating the critical failure surface and relating FOS. Moreover, in contrast with previous studies the present algorithm could reach the lower value of FOS and reached more exact solutions.展开更多
The optimal setting of directional overcurrent relays(DOCRs)ensures the fault detection and clearing in the minimum possible operation time.Directional protective relaying is carried out to coordinate relay settings i...The optimal setting of directional overcurrent relays(DOCRs)ensures the fault detection and clearing in the minimum possible operation time.Directional protective relaying is carried out to coordinate relay settings in a meshed network in the presence of distributed generation.The main goal of DOCR coordination is to find the optimal time dial setting(TDS)and pickup multiplier setting(PMS)to reach the minimum total operation time of all primary relays in the presence of coordination constraints.Due to the complexity of mixed integer non-linear programming(MINLP)problem,imperialistic competition algorithm(ICA)as a powerful evolutionary algorithm is used to solve the coordination problem of DOCRs.The proposed DOCR coordination formulation is implemented in three different test cases.The results are compared with the standard branch-and-bound algorithm and other meta-heuristic optimization algorithms,which demonstrates the effectiveness of the proposed algorithm.展开更多
Purpose–The purpose of this paper is to describe imperialist competitive algorithm(ICA),a novel socio-politically inspired optimization strategy for proposing a fuzzy variant of this algorithm.ICA is a meta-heuristic...Purpose–The purpose of this paper is to describe imperialist competitive algorithm(ICA),a novel socio-politically inspired optimization strategy for proposing a fuzzy variant of this algorithm.ICA is a meta-heuristic algorithm for dealing with different optimization tasks.The basis of the algorithm is inspired by imperialistic competition.It attempts to present the social policy of imperialisms(referred to empires)to control more countries(referred to colonies)and use their sources.If one empire loses its power,among the others making a competition to take possession of it.Design/methodology/approach–In fuzzy imperialist competitive algorithm(FICA),the colonies have a degree of belonging to their imperialists and the top imperialist,as in fuzzy logic,rather than belonging completely to just one empire therefore the colonies move toward the superior empire and their relevant empires.Simultaneously for balancing the exploration and exploitation abilities of the ICA.The algorithms are used for optimization have shortcoming to deal with accuracy rate and local optimum trap and they need complex tuning procedures.FICA is proposed a way for optimizing convex function with high accuracy and avoiding to trap in local optima rather than using original ICA algorithm by implementing fuzzy logic on it.Findings–Therefore several solution procedures,including ICA,FICA,genetic algorithm,particle swarm optimization,tabu search and simulated annealing optimization algorithm are considered.Finally numerical experiments are carried out to evaluate the effectiveness of models as well as solution procedures.Test results present the suitability of the proposed fuzzy ICA for convex functions with little fluctuations.Originality/value–The proposed evolutionary algorithm,FICA,can be used in diverse areas of optimization problems where convex functions properties are appeared including,industrial planning,resource allocation,scheduling,decision making,pattern recognition and machine learning(optimization techniques;fuzzy logic;con展开更多
This study aims to develop several optimization techniques for predicting advance rate of tunnel boring machine(TBM)in different weathered zones of granite.For this purpose,extensive field and laboratory studies have ...This study aims to develop several optimization techniques for predicting advance rate of tunnel boring machine(TBM)in different weathered zones of granite.For this purpose,extensive field and laboratory studies have been conducted along the 12,649 m of the Pahang-Selangor raw water transfer tunnel in Malaysia.Rock properties consisting of uniaxial compressive strength(UCS),Brazilian tensile strength(BTS),rock mass rating(RMR),rock quality designation(RQD),quartz content(q)and weathered zone as well as machine specifications including thrust force and revolution per minute(RPM)were measured to establish comprehensive datasets for optimization.Accordingly,to estimate the advance rate of TBM,two new hybrid optimization techniques,i.e.an artificial neural network(ANN)combined with both imperialist competitive algorithm(ICA)and particle swarm optimization(PSO),were developed for mechanical tunneling in granitic rocks.Further,the new hybrid optimization techniques were compared and the best one was chosen among them to be used for practice.To evaluate the accuracy of the proposed models for both testing and training datasets,various statistical indices including coefficient of determination(R^2),root mean square error(RMSE)and variance account for(VAF)were utilized herein.The values of R^2,RMSE,and VAF ranged in 0.939-0.961,0.022-0.036,and 93.899-96.145,respectively,with the PSO-ANN hybrid technique demonstrating the best performance.It is concluded that both the optimization techniques,i.e.PSO-ANN and ICA-ANN,could be utilized for predicting the advance rate of TBMs;however,the PSO-ANN technique is superior.展开更多
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t...Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.展开更多
Uncertainties in parameters such as materials, loading, and geometry are inevitable in designing metallic structures for cranes. When considering these uncertainty factors, reliability-based design optimization (RBDO...Uncertainties in parameters such as materials, loading, and geometry are inevitable in designing metallic structures for cranes. When considering these uncertainty factors, reliability-based design optimization (RBDO) offers a more reasonable design approach. However, existing RBDO methods for crane metallic structures are prone to low convergence speed and high computational cost. A unilevel RBDO method, combining a discrete imperialist competitive algorithm with an inverse reliabil- ity strategy based on the performance measure approach, is developed. Application of the imperialist competitive algorithm at the optimization level significantly improves the convergence speed of this RBDO method. At the reli- ability analysis level, the inverse reliability strategy is used to determine the feasibility of each probabilistic constraint at each design point by calculating its a-percentile per- formance, thereby avoiding convergence failure, calcula- tion error, and disproportionate computational effort encountered using conventional moment and simulation methods. Application of the RBDO method to an actual crane structure shows that the developed RBDO realizes a design with the best tradeoff between economy and safety together with about one-third of the convergence speed and the computational cost of the existing method. This paper provides a scientific and effective design approach for the design of metallic structures of cranes.展开更多
文摘In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium approach. The factor of safety relating to each trial slip surface is calculated using a simplified algorithm of the Morgenstern-Price method, which satisfies both the force and the moment equilibriums. General slip surface is considered non-circular in this study that is constituted by linking random straight lines.To explore the performance of the proposed algorithm, four benchmark test problems are analyzed. The results demonstrate that the present techniques can provide reliable, accurate and efficient solutions for locating the critical failure surface and relating FOS. Moreover, in contrast with previous studies the present algorithm could reach the lower value of FOS and reached more exact solutions.
文摘The optimal setting of directional overcurrent relays(DOCRs)ensures the fault detection and clearing in the minimum possible operation time.Directional protective relaying is carried out to coordinate relay settings in a meshed network in the presence of distributed generation.The main goal of DOCR coordination is to find the optimal time dial setting(TDS)and pickup multiplier setting(PMS)to reach the minimum total operation time of all primary relays in the presence of coordination constraints.Due to the complexity of mixed integer non-linear programming(MINLP)problem,imperialistic competition algorithm(ICA)as a powerful evolutionary algorithm is used to solve the coordination problem of DOCRs.The proposed DOCR coordination formulation is implemented in three different test cases.The results are compared with the standard branch-and-bound algorithm and other meta-heuristic optimization algorithms,which demonstrates the effectiveness of the proposed algorithm.
文摘Purpose–The purpose of this paper is to describe imperialist competitive algorithm(ICA),a novel socio-politically inspired optimization strategy for proposing a fuzzy variant of this algorithm.ICA is a meta-heuristic algorithm for dealing with different optimization tasks.The basis of the algorithm is inspired by imperialistic competition.It attempts to present the social policy of imperialisms(referred to empires)to control more countries(referred to colonies)and use their sources.If one empire loses its power,among the others making a competition to take possession of it.Design/methodology/approach–In fuzzy imperialist competitive algorithm(FICA),the colonies have a degree of belonging to their imperialists and the top imperialist,as in fuzzy logic,rather than belonging completely to just one empire therefore the colonies move toward the superior empire and their relevant empires.Simultaneously for balancing the exploration and exploitation abilities of the ICA.The algorithms are used for optimization have shortcoming to deal with accuracy rate and local optimum trap and they need complex tuning procedures.FICA is proposed a way for optimizing convex function with high accuracy and avoiding to trap in local optima rather than using original ICA algorithm by implementing fuzzy logic on it.Findings–Therefore several solution procedures,including ICA,FICA,genetic algorithm,particle swarm optimization,tabu search and simulated annealing optimization algorithm are considered.Finally numerical experiments are carried out to evaluate the effectiveness of models as well as solution procedures.Test results present the suitability of the proposed fuzzy ICA for convex functions with little fluctuations.Originality/value–The proposed evolutionary algorithm,FICA,can be used in diverse areas of optimization problems where convex functions properties are appeared including,industrial planning,resource allocation,scheduling,decision making,pattern recognition and machine learning(optimization techniques;fuzzy logic;con
文摘This study aims to develop several optimization techniques for predicting advance rate of tunnel boring machine(TBM)in different weathered zones of granite.For this purpose,extensive field and laboratory studies have been conducted along the 12,649 m of the Pahang-Selangor raw water transfer tunnel in Malaysia.Rock properties consisting of uniaxial compressive strength(UCS),Brazilian tensile strength(BTS),rock mass rating(RMR),rock quality designation(RQD),quartz content(q)and weathered zone as well as machine specifications including thrust force and revolution per minute(RPM)were measured to establish comprehensive datasets for optimization.Accordingly,to estimate the advance rate of TBM,two new hybrid optimization techniques,i.e.an artificial neural network(ANN)combined with both imperialist competitive algorithm(ICA)and particle swarm optimization(PSO),were developed for mechanical tunneling in granitic rocks.Further,the new hybrid optimization techniques were compared and the best one was chosen among them to be used for practice.To evaluate the accuracy of the proposed models for both testing and training datasets,various statistical indices including coefficient of determination(R^2),root mean square error(RMSE)and variance account for(VAF)were utilized herein.The values of R^2,RMSE,and VAF ranged in 0.939-0.961,0.022-0.036,and 93.899-96.145,respectively,with the PSO-ANN hybrid technique demonstrating the best performance.It is concluded that both the optimization techniques,i.e.PSO-ANN and ICA-ANN,could be utilized for predicting the advance rate of TBMs;however,the PSO-ANN technique is superior.
基金Project(61873283)supported by the National Natural Science Foundation of ChinaProject(KQ1707017)supported by the Changsha Science&Technology Project,ChinaProject(2019CX005)supported by the Innovation Driven Project of the Central South University,China。
文摘Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.
基金Supported by National Natural Science Foundation of China(Grant No.51275329)
文摘Uncertainties in parameters such as materials, loading, and geometry are inevitable in designing metallic structures for cranes. When considering these uncertainty factors, reliability-based design optimization (RBDO) offers a more reasonable design approach. However, existing RBDO methods for crane metallic structures are prone to low convergence speed and high computational cost. A unilevel RBDO method, combining a discrete imperialist competitive algorithm with an inverse reliabil- ity strategy based on the performance measure approach, is developed. Application of the imperialist competitive algorithm at the optimization level significantly improves the convergence speed of this RBDO method. At the reli- ability analysis level, the inverse reliability strategy is used to determine the feasibility of each probabilistic constraint at each design point by calculating its a-percentile per- formance, thereby avoiding convergence failure, calcula- tion error, and disproportionate computational effort encountered using conventional moment and simulation methods. Application of the RBDO method to an actual crane structure shows that the developed RBDO realizes a design with the best tradeoff between economy and safety together with about one-third of the convergence speed and the computational cost of the existing method. This paper provides a scientific and effective design approach for the design of metallic structures of cranes.