The plasma status of vacuum arc before arc current zero,has a great influence on the interruption performance of the vacuum circuit breakers.In this paper,a vacuum arc model in a short gap was established based on the...The plasma status of vacuum arc before arc current zero,has a great influence on the interruption performance of the vacuum circuit breakers.In this paper,a vacuum arc model in a short gap was established based on the magnet hydrodynamic(MHD) and a common computational fluid dynamics(CFD) software was utilized to specially investigate the properties of this arc.The spatial distributions of plasma pressure,plasma density,ion axial velocity, and axial current density in front of the anode surface of vacuum arc in this case were obtained.Simulation results indicate that:from the cathode to the anode,both of the plasma pressure and the plasma density increase gradually,and the plasma axial velocity decreases gradually;the axial current density in front of anode has a large radial gradient, and the maximum value is still smaller than the threshold current density for the anode-spot formation,thus,the anode is still passive.The comparison between the plasma density of simulation and the CMOS images taken by the high-speed camera indicates that they are in reasonable agreement with each other and demonstrates the feasibility of the vacuum arc model.展开更多
This research is made to visualize the boundary layer flow by a curved stretching sheet embedded in porous medium. The geometry is bended(curved), therefore the curvilinear coordinates are used to model the present pr...This research is made to visualize the boundary layer flow by a curved stretching sheet embedded in porous medium. The geometry is bended(curved), therefore the curvilinear coordinates are used to model the present problem.Fluid is electrically conducting with the presence of uniform magnetic field. The governing non-linear partial differential equation reduces to non-linear ordinary differential equations by using the dimensionless suitable transformations. The numerical solutions are obtained by using the method bvp4c from MATLAB. The effects of curvature parameter, nondimensional magnetic parameter, and porosity parameter on the velocity field and skin friction coefficient are examined.The skin friction profile enhances with enhancing the values of porosity and magnetic parameter. Comparison of the present results with the existing results in the literature for the flat surface is also given.展开更多
This study investigates the flow and heat transfer of dusty Williamson (MHD) Nanofluid flow over a stretching permeable cylinder in a porous medium. Dusty Williamson Nanofluid was considered due to its thermal propert...This study investigates the flow and heat transfer of dusty Williamson (MHD) Nanofluid flow over a stretching permeable cylinder in a porous medium. Dusty Williamson Nanofluid was considered due to its thermal properties and potential benefits of increasing the heat transfer rate. Firstly, partial differential equations are transformed into coupled non-linear ordinary differential equations through a similarity variables transformation. The resulting set of dimensionless equations is solved analytically by using the Homogony Perturbation Method (HPM). The effects of the emerging parameters on the velocity and temperature profiles as well as skin-friction coefficient and Nusselt number are publicized through tables and graphs with appropriate discussions. The present result has been compared with published papers and found to be in agreement. To the best of author’s knowledge, there has been sparse research work in the literature that considers the effect of dust with Williamson Nanofluid and also solving the problem analytically. Therefore to the best of author’s knowledge, this is the first time analytical solution has been established for the problem. The results revealed that the fluid velocity of both the fluid and dust phases decreases as the Williamson parameter increases. Motivated by the above limitations and the gaps in past works, therefore, it is hoped that the present work will assist in providing accurate solutions to many practical problems in science, industry and engineering.展开更多
In this article, we present accurate analytical solutions for boundary layer flow and heat transfer of an incompressible and electrically conducting viscoelastic fluid over a linearly stretching surface subject to a t...In this article, we present accurate analytical solutions for boundary layer flow and heat transfer of an incompressible and electrically conducting viscoelastic fluid over a linearly stretching surface subject to a transverse uniform magnetic field using the homotopy analysis method (HAM) for two general types of non-isothermal boundary conditions. In addition, we demonstrate that the previously reported analytical solutions for the temperature field given in terms of Kummer's function do not converge at the boundary. We provide a graphical and numerical demonstration of the convergence of the HAM solutions and tabulate the effects of various parameters on the skin friction coefficient and wall heat transfer.展开更多
The approximate solution of the magneto-hydrodynamic (MHD) boundary layer flow over a nonlinear stretching sheet is obtained by combining the Lie symmetry method with the homotopy perturbation method. The approximat...The approximate solution of the magneto-hydrodynamic (MHD) boundary layer flow over a nonlinear stretching sheet is obtained by combining the Lie symmetry method with the homotopy perturbation method. The approximate solution is tabulated, plotted for the values of various parameters and compared with the known solutions. It is found that the approximate solution agrees very well with the known numerical solutions, showing the reliability and validity of the present work.展开更多
The stability(or instability)of finite sized magnetic island could play a significant role in disruption avoidance or disruption mitigation dynamics.Especially,various current and pressure profile modifications,such a...The stability(or instability)of finite sized magnetic island could play a significant role in disruption avoidance or disruption mitigation dynamics.Especially,various current and pressure profile modifications,such as the current drive and heating caused by electron cyclotron wave,or the radiative cooling and current expulsion caused by the shattered pellet injection could be applied within the island to modify its stability,thus changing the ensuing dynamics.In this study,we calculate the mode structure modification caused by such profile changes within the island using the perturbed equilibrium approach,thus obtain the change of stability criterion Δ′ and assess the corresponding quasi-linear island stability.The positive helical current perturbation is found to always stabilize the island,while the negative one is found to do the opposite,in agreement with previous results.The pressure bump or hole within the island has a more complicated stability impact.In the small island regime,its contribution is monotonic,with pressure bump that tends to stabilize the island while pressure hole destabilizes it.This effect is relatively weak,though,due to the cancellation of the pressure term’s odd parity contribution in the second derivatives of the mode structure.In the large island regime,such cancellation is broken due to the island asymmetry,and the pressure contribution to stability is manifested,which is non-monotonic.The stability analysis in this paper helps to more accurately clarify the expected island response in the presence of profile modifications caused by disruption avoidance or mitigation systems.展开更多
In this contemporary study,theoritical investigation of nanofluidic model is thought-out.Two-dimensional nanomaterials based mixed flow is considered here.Convective solar radiative heat transport properties have been...In this contemporary study,theoritical investigation of nanofluidic model is thought-out.Two-dimensional nanomaterials based mixed flow is considered here.Convective solar radiative heat transport properties have been investigated over a nonlinearly stretched wall in the presence of magneto-hydrodynamic(MHD),by innovative application of semi analytical“optimal homotopy asymptotic method(OHAM)”.OHAM does not require any discretization,linearization and small parameter assumption.OHAM describes extremely precise 1^(st)/2^(nd) order solutions without the need of computing further higher order terms,therefore,fast convergence is observed.Nanofluidic governing model is transformed into system of ordinary differential equations(ODEs)by exploitation of similarity transformation.To study the significance of radiation parameter alongwith thermophoresis parameter,a semi analytical solver is applied to the transformed system.In this work,Brownianmotion,influence ofmagnetic field,Lewis number,Prandtl number,Eckert number and Biot number have investigated on velocity,temperature and nanoparticle concentration profiles.The study provides sufficient number of graphical representations to demonstrate the inspiration of mentioned parameters.展开更多
Consider d-dimensional magneto-hydrodynamic(MHD)equations with fractional dissipations driven by multiplicative noise.First,we prove the existence of martingale solutions for stochastic fractional MHD equations in the...Consider d-dimensional magneto-hydrodynamic(MHD)equations with fractional dissipations driven by multiplicative noise.First,we prove the existence of martingale solutions for stochastic fractional MHD equations in the case of d=2,3 andα∧β〉0,whereα,βare the parameters of the fractional dissipations in the equation.Second,for d=2,3 andα∧β≥12+d4,we show the pathwise uniqueness of solutions and then obtain the existence and uniqueness of strong solutions using the Yamada-Watanabe theorem.Furthermore,we establish the exponential mixing property for stochastic MHD equations with degenerate multiplicative noise when d=2,3 andα∧β≥12+d4.展开更多
基金Supported by National Natural Science Foundation of China(50537010,50977004)
文摘The plasma status of vacuum arc before arc current zero,has a great influence on the interruption performance of the vacuum circuit breakers.In this paper,a vacuum arc model in a short gap was established based on the magnet hydrodynamic(MHD) and a common computational fluid dynamics(CFD) software was utilized to specially investigate the properties of this arc.The spatial distributions of plasma pressure,plasma density,ion axial velocity, and axial current density in front of the anode surface of vacuum arc in this case were obtained.Simulation results indicate that:from the cathode to the anode,both of the plasma pressure and the plasma density increase gradually,and the plasma axial velocity decreases gradually;the axial current density in front of anode has a large radial gradient, and the maximum value is still smaller than the threshold current density for the anode-spot formation,thus,the anode is still passive.The comparison between the plasma density of simulation and the CMOS images taken by the high-speed camera indicates that they are in reasonable agreement with each other and demonstrates the feasibility of the vacuum arc model.
文摘This research is made to visualize the boundary layer flow by a curved stretching sheet embedded in porous medium. The geometry is bended(curved), therefore the curvilinear coordinates are used to model the present problem.Fluid is electrically conducting with the presence of uniform magnetic field. The governing non-linear partial differential equation reduces to non-linear ordinary differential equations by using the dimensionless suitable transformations. The numerical solutions are obtained by using the method bvp4c from MATLAB. The effects of curvature parameter, nondimensional magnetic parameter, and porosity parameter on the velocity field and skin friction coefficient are examined.The skin friction profile enhances with enhancing the values of porosity and magnetic parameter. Comparison of the present results with the existing results in the literature for the flat surface is also given.
文摘This study investigates the flow and heat transfer of dusty Williamson (MHD) Nanofluid flow over a stretching permeable cylinder in a porous medium. Dusty Williamson Nanofluid was considered due to its thermal properties and potential benefits of increasing the heat transfer rate. Firstly, partial differential equations are transformed into coupled non-linear ordinary differential equations through a similarity variables transformation. The resulting set of dimensionless equations is solved analytically by using the Homogony Perturbation Method (HPM). The effects of the emerging parameters on the velocity and temperature profiles as well as skin-friction coefficient and Nusselt number are publicized through tables and graphs with appropriate discussions. The present result has been compared with published papers and found to be in agreement. To the best of author’s knowledge, there has been sparse research work in the literature that considers the effect of dust with Williamson Nanofluid and also solving the problem analytically. Therefore to the best of author’s knowledge, this is the first time analytical solution has been established for the problem. The results revealed that the fluid velocity of both the fluid and dust phases decreases as the Williamson parameter increases. Motivated by the above limitations and the gaps in past works, therefore, it is hoped that the present work will assist in providing accurate solutions to many practical problems in science, industry and engineering.
文摘In this article, we present accurate analytical solutions for boundary layer flow and heat transfer of an incompressible and electrically conducting viscoelastic fluid over a linearly stretching surface subject to a transverse uniform magnetic field using the homotopy analysis method (HAM) for two general types of non-isothermal boundary conditions. In addition, we demonstrate that the previously reported analytical solutions for the temperature field given in terms of Kummer's function do not converge at the boundary. We provide a graphical and numerical demonstration of the convergence of the HAM solutions and tabulate the effects of various parameters on the skin friction coefficient and wall heat transfer.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11071159) and the College Science Research Project of Inner Mongolia, China (Grant No. NJzy08180).
文摘The approximate solution of the magneto-hydrodynamic (MHD) boundary layer flow over a nonlinear stretching sheet is obtained by combining the Lie symmetry method with the homotopy perturbation method. The approximate solution is tabulated, plotted for the values of various parameters and compared with the known solutions. It is found that the approximate solution agrees very well with the known numerical solutions, showing the reliability and validity of the present work.
基金Project supported by the National MCF Energy Research and Development Program of China (Grant No. 2019YFE03010001)the National Natural Science Foundation of China (Grant No. 11905004)
文摘The stability(or instability)of finite sized magnetic island could play a significant role in disruption avoidance or disruption mitigation dynamics.Especially,various current and pressure profile modifications,such as the current drive and heating caused by electron cyclotron wave,or the radiative cooling and current expulsion caused by the shattered pellet injection could be applied within the island to modify its stability,thus changing the ensuing dynamics.In this study,we calculate the mode structure modification caused by such profile changes within the island using the perturbed equilibrium approach,thus obtain the change of stability criterion Δ′ and assess the corresponding quasi-linear island stability.The positive helical current perturbation is found to always stabilize the island,while the negative one is found to do the opposite,in agreement with previous results.The pressure bump or hole within the island has a more complicated stability impact.In the small island regime,its contribution is monotonic,with pressure bump that tends to stabilize the island while pressure hole destabilizes it.This effect is relatively weak,though,due to the cancellation of the pressure term’s odd parity contribution in the second derivatives of the mode structure.In the large island regime,such cancellation is broken due to the island asymmetry,and the pressure contribution to stability is manifested,which is non-monotonic.The stability analysis in this paper helps to more accurately clarify the expected island response in the presence of profile modifications caused by disruption avoidance or mitigation systems.
文摘In this contemporary study,theoritical investigation of nanofluidic model is thought-out.Two-dimensional nanomaterials based mixed flow is considered here.Convective solar radiative heat transport properties have been investigated over a nonlinearly stretched wall in the presence of magneto-hydrodynamic(MHD),by innovative application of semi analytical“optimal homotopy asymptotic method(OHAM)”.OHAM does not require any discretization,linearization and small parameter assumption.OHAM describes extremely precise 1^(st)/2^(nd) order solutions without the need of computing further higher order terms,therefore,fast convergence is observed.Nanofluidic governing model is transformed into system of ordinary differential equations(ODEs)by exploitation of similarity transformation.To study the significance of radiation parameter alongwith thermophoresis parameter,a semi analytical solver is applied to the transformed system.In this work,Brownianmotion,influence ofmagnetic field,Lewis number,Prandtl number,Eckert number and Biot number have investigated on velocity,temperature and nanoparticle concentration profiles.The study provides sufficient number of graphical representations to demonstrate the inspiration of mentioned parameters.
基金The research of S.Li was supported by the National Natural Science Foundation of China(Grant No.12001247)the Natural Science Foundation of Jiangsu Province(No.BK20201019)+2 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.20KJB110015)the Foundation of Jiangsu Normal University(No.19XSRX023)The research of W.Liu was supported by the National Natural Science Foundation of China(Grant Nos.11822106,11831014,12090011)and the PAPD of Jiangsu Higher Education Institutions.
文摘Consider d-dimensional magneto-hydrodynamic(MHD)equations with fractional dissipations driven by multiplicative noise.First,we prove the existence of martingale solutions for stochastic fractional MHD equations in the case of d=2,3 andα∧β〉0,whereα,βare the parameters of the fractional dissipations in the equation.Second,for d=2,3 andα∧β≥12+d4,we show the pathwise uniqueness of solutions and then obtain the existence and uniqueness of strong solutions using the Yamada-Watanabe theorem.Furthermore,we establish the exponential mixing property for stochastic MHD equations with degenerate multiplicative noise when d=2,3 andα∧β≥12+d4.