期刊文献+

半空间上MHD方程弱解的衰减下界

Lower Bound of the Energy Decay of the Weak Solution of the MHD Equations in the Half-Space
下载PDF
导出
摘要 研究了磁流体力学(MHD)方程的弱解在半空间Rn+上的衰减性质,通过建立一族产生弱衰减的初值,得到了MHD方程的衰减下界. An asymptotic behavior of weak solution of the magneto-hydrodynamic(MHD)equations in the half-spaceR犚n+is studied.By constructing aclass of initial datawhich cause slow decay,lower bound of the energy decay of the MHD equations is obtained.
作者 吕锴
机构地区 东华大学理学院
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期160-166,共7页 Journal of Donghua University(Natural Science)
关键词 磁流体力学(MHD)方程 半空间 衰减下界 magneto-hydrodynamic(MHD)equations half-space lower bound of the energy decay
  • 相关文献

参考文献12

  • 1DUVAUT G,LIONS J L.Inéquations en thermoélasticitéet magnétohydrodynamique[J].Arch Ration Mech Anal,1972,46(4):241-279. 被引量:1
  • 2ZHAO C,HE Y.Global Ln strong solutions to magnetohydrodynamics equations in the Rn space[J].Dyn Contin Discrete Impuls Syst Ser A Math Anal,2007,14(6):805-835. 被引量:1
  • 3LI Y,ZHAO C.Existence,uniqueness and decay properties of strong solutions to an evo-lutionary system of MHD type in R3[J].J Dyn Diff Eq,2006,18(2):393-462. 被引量:1
  • 4KATO T.Strong Lp solutions of the Navier-Stokes equations in Rm with applications to weak solutions[J].Math Z,1984,187(41):471-480. 被引量:1
  • 5SERMANGE M,TEMAM R.Some mathematical questions related to the MHD equations[J].Comm Pure Appl Math,1983,36(5):635-664. 被引量:1
  • 6AGAPITO R,SCHONBEK M.Non-uniform decay of MHD equations with and without magnetic diffusion[J].Comm Part Diff Eq,2007,32(11):1791-1812. 被引量:1
  • 7GUO B,ZHANG L.Decay of solutions to magnetohydrodynamics equations in two space dimensions[J].Pro R Soc Lond Ser A Math Phys Eng Sci,1995,449(1935):79-91. 被引量:1
  • 8刘颖,李佳.半空间MHD方程组弱解的L^2衰减[J].数学物理学报(A辑),2010,30(4):1166-1175. 被引量:1
  • 9OKABE T.Lower bound of L2 decay of the Navier-Stokes flow in the half-space Rn+and its asymptotic behavior in the frequency space[J].J Math Anal Appl,2013,401(2):534-547. 被引量:1
  • 10SCHONBEK M E,SCHONBEK T P,SLI E.Large-time behaviour of solutions to the magnetohydrodynamics equations[J].Math Ann,1996,304(1):717-756. 被引量:1

二级参考文献16

  • 1Ukai S. A solution formula for the Stokes equation in R+^n. Comm Pure Appl Math XL, 1987, 49:611-621. 被引量:1
  • 2Borchers W, Miyakawa T. L^2 decay rate for the Navier-Stokes flow in half spaces. Math Ann, 1988, 282: 139 155. 被引量:1
  • 3Fujigaki Y, Miyakawa T. On Solutions with Fast Decay of Nonstationary Navier-Stokes System in the Half Space. Nonlinear Problems in Mathematical Physics and Related Topics. New York: Kluwerth Plenum, 2002. 被引量:1
  • 4Giga Y. Solutions for semilinear parabolic equations in L^p and regularity of weak solutions of the Navier- Stokes system. Journal of Differential Equations, 1986, 61:186- 212. 被引量:1
  • 5Zhou Y. A remark on the decay of solutions to the 3-D Navier-Stokes equations. Math Methods Appl Sci, 2007, 30(10): 1223 1229. 被引量:1
  • 6He C. Weighted energy inequalities for nonstationary Navier-Stokes equations. J Differential Equations, 1998, 148:422-444. 被引量:1
  • 7He C, Xin Z. On the decay properties of solutions to the non-stationary Navier-Stokes equations in R3. Proc Roy Soc Edinburgh Sect A, 2001, 131:597-619. 被引量:1
  • 8Bae H, Choe H J. Decay rate for the incompressible flows in half spaces. Math Z, 2001, 238:799-816. 被引量:1
  • 9Bae H O, Jin B J. Temporal and spatial decays for the Navier-Stokes equations. Proc Royal Soc Edinburgh (Sect A), 2005, 135:461-477. 被引量:1
  • 10Bae H O, Jin B J. Upper and Lower bounds of temporal and spatial decays for the Navier-Stokes equations. J Differential Equations, 2005, 209:365- 391. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部