With the popularization of the Intemet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society...With the popularization of the Intemet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the develoDment of Al 2.0 are given.展开更多
The long-term goal of artificial intelligence (AI) is to make machines learn and think like human beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems t...The long-term goal of artificial intelligence (AI) is to make machines learn and think like human beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems that humans are facing, no matter how intelligent machines are, they are unable to completely replace humans. Therefore, it is necessary to introduce human cognitive capabilities or human-like cognitive models into AI systems to develop a new form of AI, that is, hybrid-augmented intelligence. This form of AI or machine intelligence is a feasible and important developing model. Hybrid-augmented intelligence can be divided into two basic models: one is human-in-the-loop augmented intelligence with human-computer collaboration, and the other is cognitive computing based augmented intelligence, in which a cognitive model is embedded in the machine learning system. This survey describes a basic framework for human-computer collaborative hybrid-augmented intelligence, and the basic elements of hybrid-augmented intelligence based on cognitive computing. These elements include intuitive reasoning, causal models, evolution of memory and knowledge, especially the role and basic principles of intuitive reasoning for complex problem solving, and the cognitive learning framework for visual scene understanding based on memory and reasoning. Several typical applications of hybrid-augmented intelligence in related fields are given.展开更多
Using the differences and complementarities between human intelligence and artificial intelligence(AI),a hybrid-augmented intelligence,that is both stronger than human intelligence and AI,is created through Human-AI C...Using the differences and complementarities between human intelligence and artificial intelligence(AI),a hybrid-augmented intelligence,that is both stronger than human intelligence and AI,is created through Human-AI Cooperation(HAC)for teaching and learning.Human-AI Cooperation is infiltrating into all links of education,and recent research has focused a lot on the impact of teaching,learning,management,and evaluation with Human-AI Cooperation.However,AI still has its limits of intelligence,and cannot cooperate as humans.Thus,it is critical to study the obstacles of Human-AI Cooperation in education,as AI plays a role as a partner,not a tool.This study discussed for the first time how teachers and AI cooperate based on Multiple Intelligences of AI proposed by Andrzej Cichocki and puts forward a new Human-AI Cooperation teaching mode:human in the loop and teaching as leadership.It is proposed that humans in the loop and teaching as leadership can solve the problem that AI cannot cope with complex and dynamic teaching tasks in open situations,as well as the limits of intelligence for AI.展开更多
文摘With the popularization of the Intemet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the develoDment of Al 2.0 are given.
基金Project supported by the Chinese Academy of Engi- neering, the National Natural Science Foundation of China (No. L1522023), the National Basic Research Program (973) of China (No. 2015CB351703), and the National Key Research and Development Plan (Nos. 2016YFB1001004 and 2016YFB1000903)
文摘The long-term goal of artificial intelligence (AI) is to make machines learn and think like human beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems that humans are facing, no matter how intelligent machines are, they are unable to completely replace humans. Therefore, it is necessary to introduce human cognitive capabilities or human-like cognitive models into AI systems to develop a new form of AI, that is, hybrid-augmented intelligence. This form of AI or machine intelligence is a feasible and important developing model. Hybrid-augmented intelligence can be divided into two basic models: one is human-in-the-loop augmented intelligence with human-computer collaboration, and the other is cognitive computing based augmented intelligence, in which a cognitive model is embedded in the machine learning system. This survey describes a basic framework for human-computer collaborative hybrid-augmented intelligence, and the basic elements of hybrid-augmented intelligence based on cognitive computing. These elements include intuitive reasoning, causal models, evolution of memory and knowledge, especially the role and basic principles of intuitive reasoning for complex problem solving, and the cognitive learning framework for visual scene understanding based on memory and reasoning. Several typical applications of hybrid-augmented intelligence in related fields are given.
基金This research was supported by"Zhejiang Soft Science Research Program,Grant no:2021C35016".
文摘Using the differences and complementarities between human intelligence and artificial intelligence(AI),a hybrid-augmented intelligence,that is both stronger than human intelligence and AI,is created through Human-AI Cooperation(HAC)for teaching and learning.Human-AI Cooperation is infiltrating into all links of education,and recent research has focused a lot on the impact of teaching,learning,management,and evaluation with Human-AI Cooperation.However,AI still has its limits of intelligence,and cannot cooperate as humans.Thus,it is critical to study the obstacles of Human-AI Cooperation in education,as AI plays a role as a partner,not a tool.This study discussed for the first time how teachers and AI cooperate based on Multiple Intelligences of AI proposed by Andrzej Cichocki and puts forward a new Human-AI Cooperation teaching mode:human in the loop and teaching as leadership.It is proposed that humans in the loop and teaching as leadership can solve the problem that AI cannot cope with complex and dynamic teaching tasks in open situations,as well as the limits of intelligence for AI.