期刊文献+

基于深度强化学习与演化计算的风-水-火混合增强智能调度 被引量:1

Wind-hydro-thermal hybrid-augmented intelligent scheduling based on deep reinforcement learning and evolutionary computation
原文传递
导出
摘要 火电、水电和风电是我国电力工业系统的三大能源主体,根据风-水-火发电互补特性,建立联合优化调度模型对于降低电力系统运行成本以及促进新能源消纳具有重要意义.然而梯级水电站间的时空耦合性、风电的不确定性以及风-水-火多能源相互关联的复杂约束使得联合调度模型求解较为困难.因此,本文提出了一种基于深度强化学习(deep reinforcement learning,DRL)与演化计算的混合增强智能优化框架.该框架首先利用深度强化学习与风-水-火联合调度模型进行交互,并根据交互数据对联合调度模型复杂规律进行持续学习,优化自身控制策略,提高智能体泛化能力.此后,在解决实际调度问题时,为进一步提升算法的个性化能力,利用演化计算算法(particle swarm optimization,PSO)在经过训练的DRL上进一步优化调度方案,实现风-水-火联合调度的快速决策.算例分析表明,所提出的混合增强智能优化框架求解速度快、寻优能力强,提升了DRL优化性能的鲁棒性,提高了风-水-火系统运行的经济性及风电消纳能力. Thermal,hydro,and wind power are the primary energy sources of the power industry system in China.Thus,building a wind-hydrothermal complementary scheduling mode is important for reducing system operating costs and improving renewable energy accommodation.However,the temporal and spatial coupling of cascade hydropower stations,the uncertainty of wind speed,and complex constraints among multiple energy sources make the model difficult to solve.Thus,this paper proposed a hybrid-augmented intelligent optimization framework based on deep reinforcement learning(DRL)and evolutionary computation.The first step of the framework is using DRL to interact with the wind-hydro-thermal complementary scheduling model and learning the regularity of the model based on the interaction data,optimizing the control policy according to a trial-and-error strategy,and improving the generalization ability.Then,to enhance the algorithm's personalization ability when addressing industrial problems,particle swarm optimization is used to optimize the schedule of the wind-hydro-thermal system based on trained DRL.This step achieves rapid decision-making for wind-hydro-thermal complementary scheduling.Case studies show that the proposed optimization framework has outstanding responding speed and searching performance.Meanwhile,it improves the economical and renewable energy accommodation of the wind-hydro-thermal complementary scheduling model.
作者 李远征 郝国凯 杨东升 赵勇 周杰韩 曾志刚 LI YuanZheng;HAO GuoKai;YANG DongSheng;ZHAO Yong;ZHOU JieHan;ZENG ZhiGang(School of Artificial Inteigence and Automation,Huazhong University of Science and Technology Wuhan 430074,China;College of Information Science and Engineering,Northeast University,Shenyang I10006,China;Faculty of Information Technology and Electrical Engineering,University of Oulu,Oulu FI-90014,Finland)
出处 《中国科学:技术科学》 EI CSCD 北大核心 2023年第7期1097-1113,共17页 Scientia Sinica(Technologica)
基金 国家电网总部科技项目(编号:5108-202315041A-1-1-ZN)资助。
关键词 混合增强智能 深度强化学习 演化计算 风-水-火联合调度 滚动优化 hybrid-augmented intelligence deep reinforeement learning wind-hydro-thermal complementary scheduling evolutionary computation rolling optimization
  • 相关文献

参考文献6

二级参考文献71

  • 1倪琳娜,罗吉,王少荣.含风电电力系统的频率控制[J].电工技术学报,2011,26(S1):235-241. 被引量:31
  • 2艾欣,刘晓.基于可信性理论的含风电场电力系统动态经济调度[J].中国电机工程学报,2011,31(S1):12-18. 被引量:56
  • 3赵渊,周家启,周念成,谢开贵,刘洋,况军.大电力系统可靠性评估的解析计算模型[J].中国电机工程学报,2006,26(5):19-25. 被引量:96
  • 4孙毅,路轶.四川电网自动发电控制(AGC)应用及分析[J].华中电力,2007,20(1):29-31. 被引量:5
  • 5Liu Guodong,Kevin Tomsovic.Quantifying spinning reserve in systems with significant wind power penetration[J].IEEE Transactions on Power Systems,2012,27(4):2385-2393. 被引量:1
  • 6Rajesh K,Hu Po,Billinton R.Reliability evaluation considering wind and hydro power coordination[J].IEEE Transactions on Power Systems,2010,25(2):685-693. 被引量:1
  • 7Zhou B,Chan K W,Yu T,et al.Equilibrium-inspired multiple group search optimization with synergistic learning for multiobjective electric power dispatch[J].IEEE Transactions on Power Systems,2013,28(4):3534-3545. 被引量:1
  • 8Surender R S,Bijwe P R,Abhyankar A R.Multi-objective market clearing of electrical energy, spinning reserves and emission for wind-thermal power system[J].Electrical Power and Energy Systems,2013(53):782-794. 被引量:1
  • 9Niknam T,Doagou-Mojarrad H.Mutiobjective economic/emission dispatch by multiobjective-particle swarm optimization[J].IET Generation Transmission Distribution,2012,6(5):363-377. 被引量:1
  • 10Rao R V,Savsani V J,Vakharia D P.Teaching-learning-based optimization:a novel method for constrained mechanical design optimization problems[J].Computer Aided Design,2011,43(3):303-315. 被引量:1

共引文献148

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部