The influenza A viruses have three gene segments, M, NS, and PB1, which code for more than one protein. The overlapping genes from the same segment entail their interdependence, which could be reflected in the evoluti...The influenza A viruses have three gene segments, M, NS, and PB1, which code for more than one protein. The overlapping genes from the same segment entail their interdependence, which could be reflected in the evolutionary constraints, host distinction, and co-mutations of influenza. Most previous studies of overlapping genes focused on their unique evolutionary constraints, and very little was achieved to assess the potential impact of the overlap on other biological aspects of influenza. In this study, our aim was to explore the mutual dependence in host differentiation and co-mutations in M, NS, and PB1 of avian, human, 2009 H1N1, and swine viruses, with Random Forests, information entropy, and mutual information. The host markers and highly co-mutated individual sites and site pairs (P values < 0.035) in the three gene segments were identified with their relative significance between the overlapping genes calculated. Further, Random Forests predicted that among the three stop codons in the current PB1-F2 gene of 2009 H1N1, the significance of a mutation at these sites for host differentiation was, in order from most to least, that at 12, 58, and 88, i.e., the closer to the start of the gene the more important the mutation was. Finally, our sequence analysis surprisingly revealed that the full-length PB1-F2, if the three stop codons were all mutated, would function more as a swine protein than a human protein, although the PB1 of 2009 H1N1 was derived from human H3N2.展开更多
With high morbidity and mortality worldwide, tuberculosis (TB) is still an important public health threat. The majority of human TB cases are caused by Mycobacterium tuberculosis. Although pulmonary TB is the most c...With high morbidity and mortality worldwide, tuberculosis (TB) is still an important public health threat. The majority of human TB cases are caused by Mycobacterium tuberculosis. Although pulmonary TB is the most common presentation, M. tuberculosis can disseminate into other organs and causes extrapulmonary TB (EPTB). The dissemination of bacteria from the initial site of infection to other organs can lead to fatal diseases, such as miliary and meningeal TB. Thoroughly understanding the mechanisms and pathways of dissemination would develop therapies to prevent the lethal prognosis of EPTB (miliary and meningeal TB) and vaccines to promote the development of adaptive immunity. This review focuses on risk factors of EPTB, bacterial and host genes involved in EPTB, and potential mechanisms of M. tuberculosis extrapulmonary dissemination.展开更多
In recent years,many studies have focused on the interaction between host genes and microbiota and their mutual influence(Bonder et al.,2016;Goodrich et al.,2014;Rothschild et al.,2018;Wang et al.,2016;Zhang et al.,20...In recent years,many studies have focused on the interaction between host genes and microbiota and their mutual influence(Bonder et al.,2016;Goodrich et al.,2014;Rothschild et al.,2018;Wang et al.,2016;Zhang et al.,2019).Host genetic variation influences the composition of the microbial community,for instance in inflammatory bowel disease,host genetic susceptibilities induce pathological shifts in microbiome composition.展开更多
Tomato mottle mosaic virus(ToMMV), an economically important species of the genus Tobamovirus, causes significant loss in yield and quality of tomato fruits. Here, we identified the Shandong isolate of ToMMV(ToMMV-SD)...Tomato mottle mosaic virus(ToMMV), an economically important species of the genus Tobamovirus, causes significant loss in yield and quality of tomato fruits. Here, we identified the Shandong isolate of ToMMV(ToMMV-SD) collected from symptomatic tomato fruits in Weifang, Shandong Province of China. ToMMV-SD caused symptoms such as severe mosaic, mottling, and necrosis of tomato leaves, yellow spot and necrotic lesions on tomato fruits. The obtained full genome of ToMMV-SD was 6 399 nucleotides(accession number MW373515) and had the highest identity of 99.5% with that of isolate SC13-051 from the United States of America at the genomic level. The infectious clone of ToMMV-SD was constructed and induced clear mosaic and necrotic symptoms onto Nicotiana benthamiana leaves. Several commercial tomato cultivars, harboring Tm-2~2 resistance gene, and pepper cultivars, containing L resistance gene, were susceptible to ToMMV-SD. Plants of Solanum melongena(eggplant) and Brassica pekinensis(napa cabbage) showed mottling symptoms, while N. tabacum cv. Zhongyan 100 displayed latent infection. ToMMV-SD did not infect plants of N. tabacum cv. Xanthi NN, Brassica rapa ssp. chinensis(bok choy), Raphanus sativus(radish), Vigna unguiculata cv. Yuanzhong 28-2(cowpea), or Tm-2~2 transgenic N. benthamiana. A quintuplex RT-PCR system differentiated ToMMV from tomato mosaic virus, tomato brown rugose fruit virus, tobacco mosaic virus, and tomato spotted wilt virus, with the threshold amount of 0.02 pg. These results highlight the threat posed by ToMMV to tomato and pepper cultivation and offer an efficient detection system for the simultaneous detection of four tobamoviruses and tomato spotted wilt virus infecting tomato plants in the field.展开更多
乙型肝炎病毒(hepatitis B virus,HBV)感染是一种全球性的健康问题。全球大约有4亿HBV慢性感染患者,尤其在中国,感染率高达9.8%。RNAi(RNA interference)技术具有特异性地抑制,甚至关闭基因表达的特点,在治疗HBV感染方面有很大的应用前...乙型肝炎病毒(hepatitis B virus,HBV)感染是一种全球性的健康问题。全球大约有4亿HBV慢性感染患者,尤其在中国,感染率高达9.8%。RNAi(RNA interference)技术具有特异性地抑制,甚至关闭基因表达的特点,在治疗HBV感染方面有很大的应用前景。近年来,研究者针对HBV基因设计或筛选有效siRNA靶点做了很多研究,最近还出现了针对与HBV代谢相关的宿主基因设计或筛选siRNA靶点治疗HBV的新策略。该文对RNAi技术在HBV治疗方面取得的研究进展作一综述。展开更多
Xanthomonas oryzea pv.oryzae(Xoo)is the causal agent of bacterial blight of rice,which is a significant threat to many of rice-growing regions.The type Ⅲ secretion system(T3SS)is an essential virulence factor in Xoo....Xanthomonas oryzea pv.oryzae(Xoo)is the causal agent of bacterial blight of rice,which is a significant threat to many of rice-growing regions.The type Ⅲ secretion system(T3SS)is an essential virulence factor in Xoo.Expression of the T3SS is often induced in the host environment or in hrp-inducing medium but is repressed in nutrient-rich medium.The elucidation of molecular mechanism underlying induction of T3SS genes expression is a very important step to lift the veil on global virulence regulation network in Xoo.Thus,an efficient and reliable genetic tool system is required for detection of the T3SS proteins.In this study,we constructed a protein expression vector pH3-flag based on the backbone of pHM1,a most widely used vector in Xoo strains,especially a model strain PXO99A.This vector contains a synthesized MCS-FLAG cassette that consists of a multiple cloning site(MCS),containing a modified pUC18 polylinker,and Flag as a C-terminal tag.The cassette is flanked by transcriptional terminators to eliminate interference of external transcription enabling detection of accurate protein expression.We evaluated the potential of this expression vector as T3SS proteins detection system and demonstrated it is applicable in the study of T3SS genes expression regulation in Xoo.This improved expression system could be very effectively used as a molecular tool in understanding some virulence genes expression and regulation in Xoo and other Xanthomonas spp.展开更多
文摘The influenza A viruses have three gene segments, M, NS, and PB1, which code for more than one protein. The overlapping genes from the same segment entail their interdependence, which could be reflected in the evolutionary constraints, host distinction, and co-mutations of influenza. Most previous studies of overlapping genes focused on their unique evolutionary constraints, and very little was achieved to assess the potential impact of the overlap on other biological aspects of influenza. In this study, our aim was to explore the mutual dependence in host differentiation and co-mutations in M, NS, and PB1 of avian, human, 2009 H1N1, and swine viruses, with Random Forests, information entropy, and mutual information. The host markers and highly co-mutated individual sites and site pairs (P values < 0.035) in the three gene segments were identified with their relative significance between the overlapping genes calculated. Further, Random Forests predicted that among the three stop codons in the current PB1-F2 gene of 2009 H1N1, the significance of a mutation at these sites for host differentiation was, in order from most to least, that at 12, 58, and 88, i.e., the closer to the start of the gene the more important the mutation was. Finally, our sequence analysis surprisingly revealed that the full-length PB1-F2, if the three stop codons were all mutated, would function more as a swine protein than a human protein, although the PB1 of 2009 H1N1 was derived from human H3N2.
文摘With high morbidity and mortality worldwide, tuberculosis (TB) is still an important public health threat. The majority of human TB cases are caused by Mycobacterium tuberculosis. Although pulmonary TB is the most common presentation, M. tuberculosis can disseminate into other organs and causes extrapulmonary TB (EPTB). The dissemination of bacteria from the initial site of infection to other organs can lead to fatal diseases, such as miliary and meningeal TB. Thoroughly understanding the mechanisms and pathways of dissemination would develop therapies to prevent the lethal prognosis of EPTB (miliary and meningeal TB) and vaccines to promote the development of adaptive immunity. This review focuses on risk factors of EPTB, bacterial and host genes involved in EPTB, and potential mechanisms of M. tuberculosis extrapulmonary dissemination.
基金the National Key Research and Development Program of China (2018YFC2000504, 2017YFD0500503 and 2017YFD0501000)the National Natural Science Foundation of China (81770434 and 81370906)the National Program on Key Basic Research Project of China (973 Program) (2007CB513007 and 2013CB531406)。
文摘In recent years,many studies have focused on the interaction between host genes and microbiota and their mutual influence(Bonder et al.,2016;Goodrich et al.,2014;Rothschild et al.,2018;Wang et al.,2016;Zhang et al.,2019).Host genetic variation influences the composition of the microbial community,for instance in inflammatory bowel disease,host genetic susceptibilities induce pathological shifts in microbiome composition.
基金supported by the grants from the National Natural Science Foundation of China(32072387)the‘Taishan Scholar’Construction Project,China(TS201712023)。
文摘Tomato mottle mosaic virus(ToMMV), an economically important species of the genus Tobamovirus, causes significant loss in yield and quality of tomato fruits. Here, we identified the Shandong isolate of ToMMV(ToMMV-SD) collected from symptomatic tomato fruits in Weifang, Shandong Province of China. ToMMV-SD caused symptoms such as severe mosaic, mottling, and necrosis of tomato leaves, yellow spot and necrotic lesions on tomato fruits. The obtained full genome of ToMMV-SD was 6 399 nucleotides(accession number MW373515) and had the highest identity of 99.5% with that of isolate SC13-051 from the United States of America at the genomic level. The infectious clone of ToMMV-SD was constructed and induced clear mosaic and necrotic symptoms onto Nicotiana benthamiana leaves. Several commercial tomato cultivars, harboring Tm-2~2 resistance gene, and pepper cultivars, containing L resistance gene, were susceptible to ToMMV-SD. Plants of Solanum melongena(eggplant) and Brassica pekinensis(napa cabbage) showed mottling symptoms, while N. tabacum cv. Zhongyan 100 displayed latent infection. ToMMV-SD did not infect plants of N. tabacum cv. Xanthi NN, Brassica rapa ssp. chinensis(bok choy), Raphanus sativus(radish), Vigna unguiculata cv. Yuanzhong 28-2(cowpea), or Tm-2~2 transgenic N. benthamiana. A quintuplex RT-PCR system differentiated ToMMV from tomato mosaic virus, tomato brown rugose fruit virus, tobacco mosaic virus, and tomato spotted wilt virus, with the threshold amount of 0.02 pg. These results highlight the threat posed by ToMMV to tomato and pepper cultivation and offer an efficient detection system for the simultaneous detection of four tobamoviruses and tomato spotted wilt virus infecting tomato plants in the field.
文摘乙型肝炎病毒(hepatitis B virus,HBV)感染是一种全球性的健康问题。全球大约有4亿HBV慢性感染患者,尤其在中国,感染率高达9.8%。RNAi(RNA interference)技术具有特异性地抑制,甚至关闭基因表达的特点,在治疗HBV感染方面有很大的应用前景。近年来,研究者针对HBV基因设计或筛选有效siRNA靶点做了很多研究,最近还出现了针对与HBV代谢相关的宿主基因设计或筛选siRNA靶点治疗HBV的新策略。该文对RNAi技术在HBV治疗方面取得的研究进展作一综述。
基金supported by the National Key R&D Program of China (2017YFD0200400)the National Natural Science Foundation of China (31772122 and 31470235)
文摘Xanthomonas oryzea pv.oryzae(Xoo)is the causal agent of bacterial blight of rice,which is a significant threat to many of rice-growing regions.The type Ⅲ secretion system(T3SS)is an essential virulence factor in Xoo.Expression of the T3SS is often induced in the host environment or in hrp-inducing medium but is repressed in nutrient-rich medium.The elucidation of molecular mechanism underlying induction of T3SS genes expression is a very important step to lift the veil on global virulence regulation network in Xoo.Thus,an efficient and reliable genetic tool system is required for detection of the T3SS proteins.In this study,we constructed a protein expression vector pH3-flag based on the backbone of pHM1,a most widely used vector in Xoo strains,especially a model strain PXO99A.This vector contains a synthesized MCS-FLAG cassette that consists of a multiple cloning site(MCS),containing a modified pUC18 polylinker,and Flag as a C-terminal tag.The cassette is flanked by transcriptional terminators to eliminate interference of external transcription enabling detection of accurate protein expression.We evaluated the potential of this expression vector as T3SS proteins detection system and demonstrated it is applicable in the study of T3SS genes expression regulation in Xoo.This improved expression system could be very effectively used as a molecular tool in understanding some virulence genes expression and regulation in Xoo and other Xanthomonas spp.