在层状岩体中掘进隧洞后,围岩破裂碎胀大变形机制与各向同性围岩存在很大差异。对于无支护隧洞而言,其破裂模式可归结为复合破裂、V型凹槽破裂和层间剥落,不同破裂模式受控于岩体自身物理力学特性、地应力和隧洞断面形状等因素。采用有...在层状岩体中掘进隧洞后,围岩破裂碎胀大变形机制与各向同性围岩存在很大差异。对于无支护隧洞而言,其破裂模式可归结为复合破裂、V型凹槽破裂和层间剥落,不同破裂模式受控于岩体自身物理力学特性、地应力和隧洞断面形状等因素。采用有限元-离散元法(finite-discrete element method,简称FDEM)耦合数值模拟研究了水平层状围岩破裂碎胀大变形机制,并研究了岩体强度参数(如黏聚力、内摩擦系数和抗拉强度)、变形参数(如弹性模量)、地应力和隧洞跨度对水平层状围岩破裂模式的影响。研究结果表明,复合破裂为层状岩体基本破裂模式,其机制为水平集中应力产生的共轭剪切裂隙F3在隧洞中心线附近不断向围岩深处扩展,同时产生平行于层理面的剪切滑移裂隙F1,由此产生中央破碎、两端相对完整的板块岩块;左右两侧板状岩块相互挤压向隧洞内翻转运动产生垂直层理面的拉伸裂隙F2。随着岩体强度的升高、侧压系数的增大或隧洞跨度的减小,F1裂隙消失、F2裂隙与层理面斜交,从而产生V型凹槽破裂。当岩体强度进一步升高或侧压系数进一步增大时,F3裂隙在层理面交界处受阻,进而产生了层间剥落破裂。展开更多
在水平层状岩体中进行爆破施工,临近隧道不可避免地受到爆破振动的影响.文中通过一种新的计算模型DLSM(Distinct Lattice Spring Model),以吉怀高速大林隧道为研究背景,进行数值模拟,分析层状岩体中临近隧道的爆破振动响应.DLSM真实地...在水平层状岩体中进行爆破施工,临近隧道不可避免地受到爆破振动的影响.文中通过一种新的计算模型DLSM(Distinct Lattice Spring Model),以吉怀高速大林隧道为研究背景,进行数值模拟,分析层状岩体中临近隧道的爆破振动响应.DLSM真实地再现了应力波传递、反射、折射、叠加和耗散过程;重点监测了隧道的拱顶、腰墙、墙角和底部的动力响应特征.研究发现,临近隧道靠近爆破源一侧的腰墙受到的应力波冲击最大,但是控制好爆破装药量,即可满足规范的要求.展开更多
文摘在层状岩体中掘进隧洞后,围岩破裂碎胀大变形机制与各向同性围岩存在很大差异。对于无支护隧洞而言,其破裂模式可归结为复合破裂、V型凹槽破裂和层间剥落,不同破裂模式受控于岩体自身物理力学特性、地应力和隧洞断面形状等因素。采用有限元-离散元法(finite-discrete element method,简称FDEM)耦合数值模拟研究了水平层状围岩破裂碎胀大变形机制,并研究了岩体强度参数(如黏聚力、内摩擦系数和抗拉强度)、变形参数(如弹性模量)、地应力和隧洞跨度对水平层状围岩破裂模式的影响。研究结果表明,复合破裂为层状岩体基本破裂模式,其机制为水平集中应力产生的共轭剪切裂隙F3在隧洞中心线附近不断向围岩深处扩展,同时产生平行于层理面的剪切滑移裂隙F1,由此产生中央破碎、两端相对完整的板块岩块;左右两侧板状岩块相互挤压向隧洞内翻转运动产生垂直层理面的拉伸裂隙F2。随着岩体强度的升高、侧压系数的增大或隧洞跨度的减小,F1裂隙消失、F2裂隙与层理面斜交,从而产生V型凹槽破裂。当岩体强度进一步升高或侧压系数进一步增大时,F3裂隙在层理面交界处受阻,进而产生了层间剥落破裂。
文摘在水平层状岩体中进行爆破施工,临近隧道不可避免地受到爆破振动的影响.文中通过一种新的计算模型DLSM(Distinct Lattice Spring Model),以吉怀高速大林隧道为研究背景,进行数值模拟,分析层状岩体中临近隧道的爆破振动响应.DLSM真实地再现了应力波传递、反射、折射、叠加和耗散过程;重点监测了隧道的拱顶、腰墙、墙角和底部的动力响应特征.研究发现,临近隧道靠近爆破源一侧的腰墙受到的应力波冲击最大,但是控制好爆破装药量,即可满足规范的要求.