Local site conditions play an important role in the effective application of strong motion recordings.In the China National Strong Motion Observation Network System(NSMONS),some of the stations do not provide boreho...Local site conditions play an important role in the effective application of strong motion recordings.In the China National Strong Motion Observation Network System(NSMONS),some of the stations do not provide borehole information,and correspondingly,do not assign the site classes yet.In this paper,site classification methodologies for free-field strong motion stations are reviewed and the limitations and uncertainties of the horizontal-to-vertical spectral ratio(HVSR) methods are discussed.Then,a new method for site classification based on the entropy weight theory is proposed.The proposed method avoids the head or tail joggle phenomenon by providing the objective and subjective weights.The method was applied to aftershock recordings from the 2008 Wenchuan earthquake,and 54 free-field NSMONS stations were selected for site classification and the mean HVSRs were calculated.The results show that the improved HVSR method proposed in this paper has a higher success rate and could be adopted in NSMONS.展开更多
Temporal changes in site effects are obtained using the HVSR(horizontal-to-vertical spectral ratio) method and strong motion records after the M w 7.6 Chi-Chi earthquake, Taiwan. Seismic data recorded between 1995 and...Temporal changes in site effects are obtained using the HVSR(horizontal-to-vertical spectral ratio) method and strong motion records after the M w 7.6 Chi-Chi earthquake, Taiwan. Seismic data recorded between 1995 and 2010 are used, comprising 3,708 data from 15 stations adjacent to the Chelungpu fault. Temporal fl uctuations are determined by analyzing the site effect variation using a time–frequency variation(TFV) diagram based on these seismic data. Stations adjacent to the fault show signifi cant disturbances in the resonance frequency at 16–26 Hz. Station TCU129 shows a 40% drop in fundamental frequency after the main shock, and a gradual return to the original state over nine years. For stations located farther from the fault zone, sudden changes in tectonic stress play a dominant role in temporal changes to the HVSR. An impact analysis of the directional factor confi rms our fi nding that the proximity of the fault to seismic stations has the most infl uence on data.展开更多
Active faults pose a great threat to urban security.As the largest NW-trend active fault in Beijing area,the Nankou-Sunhe fault plays an important role in earthquake disaster and city construction.In this study,we col...Active faults pose a great threat to urban security.As the largest NW-trend active fault in Beijing area,the Nankou-Sunhe fault plays an important role in earthquake disaster and city construction.In this study,we collect continuous ambient noise data recorded by 43 temporary short-period seismograph between September 21th to October 12th 2019 to investigate the near-surface structure beneath the Nankou-Sunhe fault by using ambient noise tomography(ANT)and horizontal-to-vertical spectral ratio(HVSR)method.From ambient noise processing,fundamental-mode Rayleigh wave signals are clearly observed in the frequency band of 0.4-2.5 Hz.Then direct surface-wave inversion algorithm is applied to calculate the 3D shear-wave velocity model.Our results show that there is a sharp velocity contrast across the Nankou-Sunhe fault,with low velocities down to about 2 km on the hanging wall and high velocity on the footwall of the fault.According to the geological investigation,the low velocities are related to thicker sediments and Jurassic volcanic rock below which are the cap rock of the hydrothermal system.From the HVSR analysis,the HVSR curves of the sites near the fault shows double-peak,one less than 1 Hz and the other centered 7 Hz.After converting frequency to depth by the empirical equation,the results show that the thickness of sediments is thinned from southwest to northeast,which generally agrees well to field survey.Our results provide high-resolution near-surface structure for future study on disaster risk reduction and urban planning.展开更多
基金National Key Technology R&D Program Under Grant No.2009BAK55B05Nonprofit Industry Research Project of CEA Under Grant No.201108003Science Foundation of Institute of Engineering Mechanics,CEA Under Grant No.2010C01
文摘Local site conditions play an important role in the effective application of strong motion recordings.In the China National Strong Motion Observation Network System(NSMONS),some of the stations do not provide borehole information,and correspondingly,do not assign the site classes yet.In this paper,site classification methodologies for free-field strong motion stations are reviewed and the limitations and uncertainties of the horizontal-to-vertical spectral ratio(HVSR) methods are discussed.Then,a new method for site classification based on the entropy weight theory is proposed.The proposed method avoids the head or tail joggle phenomenon by providing the objective and subjective weights.The method was applied to aftershock recordings from the 2008 Wenchuan earthquake,and 54 free-field NSMONS stations were selected for site classification and the mean HVSRs were calculated.The results show that the improved HVSR method proposed in this paper has a higher success rate and could be adopted in NSMONS.
文摘Temporal changes in site effects are obtained using the HVSR(horizontal-to-vertical spectral ratio) method and strong motion records after the M w 7.6 Chi-Chi earthquake, Taiwan. Seismic data recorded between 1995 and 2010 are used, comprising 3,708 data from 15 stations adjacent to the Chelungpu fault. Temporal fl uctuations are determined by analyzing the site effect variation using a time–frequency variation(TFV) diagram based on these seismic data. Stations adjacent to the fault show signifi cant disturbances in the resonance frequency at 16–26 Hz. Station TCU129 shows a 40% drop in fundamental frequency after the main shock, and a gradual return to the original state over nine years. For stations located farther from the fault zone, sudden changes in tectonic stress play a dominant role in temporal changes to the HVSR. An impact analysis of the directional factor confi rms our fi nding that the proximity of the fault to seismic stations has the most infl uence on data.
基金supported by Beijing Natural Science Foundation(No.8212041)National Natural Science Foundation of China(Nos.41874063 and U1939203)Shanghai Sheshan National Geophysical Observatory(No.2020K02).
文摘Active faults pose a great threat to urban security.As the largest NW-trend active fault in Beijing area,the Nankou-Sunhe fault plays an important role in earthquake disaster and city construction.In this study,we collect continuous ambient noise data recorded by 43 temporary short-period seismograph between September 21th to October 12th 2019 to investigate the near-surface structure beneath the Nankou-Sunhe fault by using ambient noise tomography(ANT)and horizontal-to-vertical spectral ratio(HVSR)method.From ambient noise processing,fundamental-mode Rayleigh wave signals are clearly observed in the frequency band of 0.4-2.5 Hz.Then direct surface-wave inversion algorithm is applied to calculate the 3D shear-wave velocity model.Our results show that there is a sharp velocity contrast across the Nankou-Sunhe fault,with low velocities down to about 2 km on the hanging wall and high velocity on the footwall of the fault.According to the geological investigation,the low velocities are related to thicker sediments and Jurassic volcanic rock below which are the cap rock of the hydrothermal system.From the HVSR analysis,the HVSR curves of the sites near the fault shows double-peak,one less than 1 Hz and the other centered 7 Hz.After converting frequency to depth by the empirical equation,the results show that the thickness of sediments is thinned from southwest to northeast,which generally agrees well to field survey.Our results provide high-resolution near-surface structure for future study on disaster risk reduction and urban planning.