行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用...行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。展开更多
针对现有疲劳驾驶检测算法实用性差或准确率低的问题,本文提出了一种基于深度学习的疲劳驾驶检测算法.首先,使用HOG(Histogram of Oriented Gradient)特征算子检测人脸的存在;其次,利用特征点模型实现人脸的对齐,同时实现眼睛、嘴巴区...针对现有疲劳驾驶检测算法实用性差或准确率低的问题,本文提出了一种基于深度学习的疲劳驾驶检测算法.首先,使用HOG(Histogram of Oriented Gradient)特征算子检测人脸的存在;其次,利用特征点模型实现人脸的对齐,同时实现眼睛、嘴巴区域的分割;最后通过深度卷积神经网络提取驾驶员的眼部疲劳特征,并融合驾驶员嘴部的疲劳特征进行疲劳预警.大量的实验表明,该方法在疲劳驾驶检测的准确率、实时性等方面都取得明显的性能提升.展开更多
文摘行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。
文摘针对现有疲劳驾驶检测算法实用性差或准确率低的问题,本文提出了一种基于深度学习的疲劳驾驶检测算法.首先,使用HOG(Histogram of Oriented Gradient)特征算子检测人脸的存在;其次,利用特征点模型实现人脸的对齐,同时实现眼睛、嘴巴区域的分割;最后通过深度卷积神经网络提取驾驶员的眼部疲劳特征,并融合驾驶员嘴部的疲劳特征进行疲劳预警.大量的实验表明,该方法在疲劳驾驶检测的准确率、实时性等方面都取得明显的性能提升.