In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transm...In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and atomic force microscopy(AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited Co Ni Cr Al Y bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in Co Ni Cr Al Y bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.展开更多
This paper attempts to investigate the effects of stress ratio and high temperature on the HCF(high-cycle-fatigue) and VHCF(very-high-cycle-fatigue) behaviors of nickel-based wrought superalloy GH3617 M. Fatigue tests...This paper attempts to investigate the effects of stress ratio and high temperature on the HCF(high-cycle-fatigue) and VHCF(very-high-cycle-fatigue) behaviors of nickel-based wrought superalloy GH3617 M. Fatigue tests over the full HCF and VHCF regimes were conducted on superalloy GH3617 M subjected to constant-amplitude loading at five stress ratios of -1, -0.5, 0,0.4, and 0.8 in environments of 20 °C and 700 °C temperatures. From experimental observation and fractographic analysis, fatigue mechanisms were deduced to reveal the synergistic interaction between high temperature and stress ratio on the HCF and VHCF behaviors of superalloy GH3617 M. A phenomenological model was crafted from available fatigue design knowledge to evaluate the synergistic interaction, and a good correlation between predictions and experiments has been achieved.展开更多
基金provided by Technical Education Quality Improvement Programme-Ⅱ(TEQIP-Ⅱ)at MNNIT Allahabad
文摘In the present study, bond-coats for thermal barrier coatings were deposited via air plasma spraying(APS) techniques onto Inconel 800 and Hastelloy C-276 alloy substrates. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and atomic force microscopy(AFM) were used to investigate the phases and microstructure of the as-sprayed, APS-deposited Co Ni Cr Al Y bond-coatings. The aim of this work was to study the suitability of the bond-coat materials for high temperature applications. Confirmation of nanoscale grains of the γ/γ′-phase was obtained by TEM, high-resolution TEM, and AFM. We concluded that these changes result from the plastic deformation of the bond-coat during the deposition, resulting in Co Ni Cr Al Y bond-coatings with excellent thermal cyclic resistance suitable for use in high-temperature applications. Cyclic oxidative stability was observed to also depend on the underlying metallic alloy substrate.
基金supported by the National Natural Science Foundation of China (No. 51875021)
文摘This paper attempts to investigate the effects of stress ratio and high temperature on the HCF(high-cycle-fatigue) and VHCF(very-high-cycle-fatigue) behaviors of nickel-based wrought superalloy GH3617 M. Fatigue tests over the full HCF and VHCF regimes were conducted on superalloy GH3617 M subjected to constant-amplitude loading at five stress ratios of -1, -0.5, 0,0.4, and 0.8 in environments of 20 °C and 700 °C temperatures. From experimental observation and fractographic analysis, fatigue mechanisms were deduced to reveal the synergistic interaction between high temperature and stress ratio on the HCF and VHCF behaviors of superalloy GH3617 M. A phenomenological model was crafted from available fatigue design knowledge to evaluate the synergistic interaction, and a good correlation between predictions and experiments has been achieved.