摘要
在中高温热源条件下,为避免工质热分解对有机朗肯循环(ORC)系统的安全和性能造成影响,循环温度的取值上限不应高于工质的热稳定上限温度(t_(stable)).循环最高温度的取值对循环优化结果产生较大影响.本文在烟气初温和质量流量分别为510℃和15.8 kg/s的热源条件下,开展了回热ORC系统的循环参数优化和工质优选研究.结果表明,若不考虑工质热分解问题,乙醇和丙酮系统的净输出功率最大.继而对乙醇和丙酮两种工质开展了热稳定性实验测量研究,结合系统允许的工质分解速率上限(年分解量不超过1%),确定了两者的t_(stable)分别为172℃和159℃;限制循环温度不超过t_(stable),乙醇和丙酮系统的净输出功率明显降低,此时回热ORC系统的最优工质为环戊烷.
Under the condition of medium-to high-temperature heat source,to avoid the influence of the thermal decomposition of the working fluid on the safety and performance of the organic Rankine cycle(ORC)system,the upper limit temperature of the cycle should not be higher than the thermal stability temperature(t_(stable))of the working fluid.The upper limit of cycle temperature has considerable influence on the results of cycle parameter optimization.In this study,under the condition of flue gas heat source with the initial temperature of 510℃and mass flow of 15.8 kg/s,the optimization of the working fluid and cycle parameters of the regenerative ORC system was investigated.Results show that the net output power of the ethanol and acetone system is the largest when the thermal decomposition of the working fluid is not considered.Then,the thermal stability of ethanol and acetone was measured.Combined with the upper limit of the allowable decomposition rate of the system(the annual decomposition amount is not more than 1%),the thermal stability temperature of the two working fluids was determined to be 172℃and 159℃.When the upper limit temperature of the power cycle is not more than the thermal stability temperature,the net output power of the ethanol and acetone system is obviously reduced,and cyclopentane is the optimal working fluid of the regenerative ORC system.
作者
王怀信
刘建宇
任黎亚
Wang Huaixin;Liu Jianyu;Ren Liya(School of Mechanical Engineering,Tianjin University,Tianjin 300350,China)
出处
《天津大学学报(自然科学与工程技术版)》
EI
CAS
CSCD
北大核心
2021年第6期585-592,共8页
Journal of Tianjin University:Science and Technology
基金
国家自然科学基金资助项目(51376134)
关键词
中高温热源
有机工质动力循环
上限温度
热稳定性
系统参数优化
medium-to high-temperature heat source
organic working fluid power cycle
upper limit temperature
thermal stability
system parameter optimization