In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method we...In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method were digital potentiometer MAXIM 5455 and linear photoelectric coupling LOC110,and application programs were compiled using Visual Basic which was graphical compiling language,furthermore the communication between exterior and computer was carried out by ICP7044D module,in consequence the output value of high voltage DC power supply could be regulated with computer.The measured results showed that this method could accurately,conveniently and rapidly regulate the output value of high voltage DC power supply.展开更多
A fully integrated Ku-band voltage controlled oscillator (VCO) is presented in an InGaP/GaAs hetero- junction bipolar transistor (HBT) technology. To achieve the wide tuning range (TR), the VCO employs a Colpitt...A fully integrated Ku-band voltage controlled oscillator (VCO) is presented in an InGaP/GaAs hetero- junction bipolar transistor (HBT) technology. To achieve the wide tuning range (TR), the VCO employs a Colpitts configuration, and the VCO simultaneously achieves high output power. The implemented VCO demonstrates an oscillation frequency range from 12.82 to 14.97 GHz, a frequency TR of 15.47%, an output power from 0.31 to 6.46 dBm, and a phase noise of -94.9 dBc/Hz at 1 MHz offset from 13.9 GHz center frequency. The VCO con- sumes 52.75 mW from 5 V supply and occupies an area of 0.81 × 0.78 mm2. Finally, the figures-of-merit for VCOs is discussed.展开更多
A novel low power and low voltage current mirror with a very low current copy error is presented and the principle of its operation is discussed. In this circuit, the gain boosting regulated cascode scheme is used to ...A novel low power and low voltage current mirror with a very low current copy error is presented and the principle of its operation is discussed. In this circuit, the gain boosting regulated cascode scheme is used to improve the output resistance, while using inverter as an amplifier. The simulation results with HSPICE in TSMC 0.18 μm CMOS technology are given, which verify the high performance of the proposed structure. Simulation results show an input resistance of 0.014 Ω and an output resistance of 3 GΩ. The current copy error is favorable as low as 0.002% together with an input (the minimum input voltage of Vin,min- 0.24 V) and an output (the minimum output voltage of Vout,min~ 0.16 V) compliances while working with the 1 V power supply and the 50 μA input current. The current copy error is near zero at the input current of 27 μA. It consumes only 76μW and introduces a very low output offset current of 50 pA.展开更多
Electrode materials have an important effect on the property of microbial fuel cell(MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel ce...Electrode materials have an important effect on the property of microbial fuel cell(MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel cell(BMFC) with higher voltage and output power. The electrochemical properties of plain carbon foam(PC) and urea-modified carbon foam(UC) are measured respectively. Results show that the UC obtains better wettability after its modification and higher anti-polarization ability than the PC. A novel phenomenon has been found that the electrical potential of the modified UC anode is nearly 100 m V lower than that of the PC, reaching-570 ±10 m V(vs. SCE), and that it also has a much higher electron transfer kinetic activity, reaching 9399.4 m W m-2, which is 566.2-fold higher than that from plain graphite anode(PG). The fuel cell containing the UC anode has the maximum power density(256.0 m W m-2) among the three different BMFCs. Urea would enhance the bacteria biofilm formation with a more diverse microbial community and maintain more electrons, leading to a lower anodic redox potential and higher power output. The paper primarily analyzes why the electrical potential of the modified anode becomes much lower than that of others after urea modification. These results can be utilized to construct a novel BMFC with higher output power and to design the conditioner of voltage booster with a higher conversion ratio. Finally, the carbon foam with a bigger pore size would be a potential anodic material in conventional MFC.展开更多
基金Project Supported by National Natural Science Foundation of China(50637020).
文摘In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method were digital potentiometer MAXIM 5455 and linear photoelectric coupling LOC110,and application programs were compiled using Visual Basic which was graphical compiling language,furthermore the communication between exterior and computer was carried out by ICP7044D module,in consequence the output value of high voltage DC power supply could be regulated with computer.The measured results showed that this method could accurately,conveniently and rapidly regulate the output value of high voltage DC power supply.
基金Project supported by the National Basic Research Program of China(No.2010CBxxxx05)the Advance Research Project of China(No.51308xxxx06)+2 种基金the Advance Research Foundation of China(No.9140A08xxxx11DZ111)Doctoral Scientific Research Foundation of Henan University of Science and Technology(No.400613480011)the Foundation of He’nan Educational Commettee(No.15A510001)
文摘A fully integrated Ku-band voltage controlled oscillator (VCO) is presented in an InGaP/GaAs hetero- junction bipolar transistor (HBT) technology. To achieve the wide tuning range (TR), the VCO employs a Colpitts configuration, and the VCO simultaneously achieves high output power. The implemented VCO demonstrates an oscillation frequency range from 12.82 to 14.97 GHz, a frequency TR of 15.47%, an output power from 0.31 to 6.46 dBm, and a phase noise of -94.9 dBc/Hz at 1 MHz offset from 13.9 GHz center frequency. The VCO con- sumes 52.75 mW from 5 V supply and occupies an area of 0.81 × 0.78 mm2. Finally, the figures-of-merit for VCOs is discussed.
基金supported by the Iran University of Science and Technology
文摘A novel low power and low voltage current mirror with a very low current copy error is presented and the principle of its operation is discussed. In this circuit, the gain boosting regulated cascode scheme is used to improve the output resistance, while using inverter as an amplifier. The simulation results with HSPICE in TSMC 0.18 μm CMOS technology are given, which verify the high performance of the proposed structure. Simulation results show an input resistance of 0.014 Ω and an output resistance of 3 GΩ. The current copy error is favorable as low as 0.002% together with an input (the minimum input voltage of Vin,min- 0.24 V) and an output (the minimum output voltage of Vout,min~ 0.16 V) compliances while working with the 1 V power supply and the 50 μA input current. The current copy error is near zero at the input current of 27 μA. It consumes only 76μW and introduces a very low output offset current of 50 pA.
基金supported by the Key Project of Natural Science Fund of Shandong Province,China(ZR2011 BZ008)the Special Fund of Marine Renewable Energy from State Ocean Bureau,China(GHME2011GD 04)
文摘Electrode materials have an important effect on the property of microbial fuel cell(MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel cell(BMFC) with higher voltage and output power. The electrochemical properties of plain carbon foam(PC) and urea-modified carbon foam(UC) are measured respectively. Results show that the UC obtains better wettability after its modification and higher anti-polarization ability than the PC. A novel phenomenon has been found that the electrical potential of the modified UC anode is nearly 100 m V lower than that of the PC, reaching-570 ±10 m V(vs. SCE), and that it also has a much higher electron transfer kinetic activity, reaching 9399.4 m W m-2, which is 566.2-fold higher than that from plain graphite anode(PG). The fuel cell containing the UC anode has the maximum power density(256.0 m W m-2) among the three different BMFCs. Urea would enhance the bacteria biofilm formation with a more diverse microbial community and maintain more electrons, leading to a lower anodic redox potential and higher power output. The paper primarily analyzes why the electrical potential of the modified anode becomes much lower than that of others after urea modification. These results can be utilized to construct a novel BMFC with higher output power and to design the conditioner of voltage booster with a higher conversion ratio. Finally, the carbon foam with a bigger pore size would be a potential anodic material in conventional MFC.