The fibrotic response plays an important role in the performance and longevity of implantable devices. Thus, development of effective anti-inflammatory and anti-fibrosis biomaterial implants has become an urgent task....The fibrotic response plays an important role in the performance and longevity of implantable devices. Thus, development of effective anti-inflammatory and anti-fibrosis biomaterial implants has become an urgent task. In this work, we developed a novel supramolecular polymer hydrogel through the copolymerization of N-acryloyl glycinamide(NAGA) and carboxybetaine acrylamide(CBAA) in the absence of any chemical crosslinker, which the mechanical properties being tunable through changing the monomer concentration and the monomer ratio over a broad scope. The hydrogel possessed the superior mechanical performances: high tensile strength(~1.13 MPa), large stretchability(~1200%), and excellent compressive strength(~9 MPa) at high monomer concentration and NAGA/CBAA ratio. Introduction of CBAA could promote the self-healability, thermoplasticity of suparmolecular polymer hydrogels at lower temperatures, meanwhile dramatically improving anti-fouling property.Histological analysis and in vitro cytotoxicity assays testified the excellent biocompatibility of the hydrogel. This high strength supramolecular polymer hydrogel with integrated multiple functions holds promising potentials as a scaffold biomaterial for treating degenerated soft supporting tissues.展开更多
A treat-to-target(T2T)approach applies the principles of early intervention and tight disease control to optimise long-term outcomes in Crohn's disease.The Selecting Therapeutic Targets in Inflammatory Bowel Disea...A treat-to-target(T2T)approach applies the principles of early intervention and tight disease control to optimise long-term outcomes in Crohn's disease.The Selecting Therapeutic Targets in Inflammatory Bowel Disease(STRIDE)-II guidelines specify short,intermediate,and long-term treatment goals,documenting specific treatment targets to be achieved at each of these timepoints.Scheduled appraisal of Crohn’s disease activity against pre-defined treatment targets at these timepoints remains central to determining whether current therapy should be continued or modified.Consensus treatment targets in Crohn’s disease comprise combination clinical and patient-reported outcome remission,in conjunction with biomarker normalisation and endoscopic healing.Although the STRIDE-II guidelines endorse the pursuit of endoscopic healing,clinicians must consider that this may not always be appropriate,acceptable,or achievable in all patients.This underscores the need to engage patients at the outset in an effort to personalise care and individualise treatment targets.The use of non-invasive biomarkers such as faecal calprotectin in conjunction with cross-sectional imaging techniques,particularly intestinal ultrasound,holds great promise;as do emerging treatment targets such as transmural healing.Two randomised clinical trials,namely,CALM and STARDUST,have evaluated the efficacy of a T2T approach in achieving endoscopic endpoints in patients with Crohn’s disease.Findings from these studies reflect that patient subgroups and Crohn’s disease characteristics likely to benefit most from a T2T approach,remain to be clarified.Moreover,outside of clinical trials,data pertaining to the real-world effectiveness of a T2T approach remains scare,highlighting the need for pragmatic real-world studies.Despite the obvious promise of a T2T approach,a lack of guidance to support its integration into real-world clinical practice has the potential to limit its uptake.This highlights the need to describe strategies,processes,and models of care ca展开更多
The substantial economic impact of non-healing wounds,scarring,and burns stemming from skin injuries is evident,resulting in a financial burden on both patients and the healthcare system.This review paper provides an ...The substantial economic impact of non-healing wounds,scarring,and burns stemming from skin injuries is evident,resulting in a financial burden on both patients and the healthcare system.This review paper provides an overview of the skin’s vital role in guarding against various environmental challenges as the body’s largest protective organ and associated developments in biomaterials for wound healing.We first introduce the composition of skin tissue and the intricate processes of wound healing,with special attention to the crucial role of immunomodulation in both acute and chronic wounds.This highlights how the imbalance in the immune response,particularly in chronic wounds associated with underlying health conditions such as diabetes and immunosuppression,hinders normal healing stages.Then,this review distinguishes between traditional wound-healing strategies that create an optimal microenvironment and recent peptide-based biomaterials that modulate cellular processes and immune responses to facilitate wound closure.Additionally,we highlight the importance of considering the stages of wounds in the healing process.By integrating advanced materials engineering with an in-depth understanding of wound biology,this approach holds promise for reshaping the field of wound management and ultimately offering improved outcomes for patients with acute and chronic wounds.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51325305,51733006)
文摘The fibrotic response plays an important role in the performance and longevity of implantable devices. Thus, development of effective anti-inflammatory and anti-fibrosis biomaterial implants has become an urgent task. In this work, we developed a novel supramolecular polymer hydrogel through the copolymerization of N-acryloyl glycinamide(NAGA) and carboxybetaine acrylamide(CBAA) in the absence of any chemical crosslinker, which the mechanical properties being tunable through changing the monomer concentration and the monomer ratio over a broad scope. The hydrogel possessed the superior mechanical performances: high tensile strength(~1.13 MPa), large stretchability(~1200%), and excellent compressive strength(~9 MPa) at high monomer concentration and NAGA/CBAA ratio. Introduction of CBAA could promote the self-healability, thermoplasticity of suparmolecular polymer hydrogels at lower temperatures, meanwhile dramatically improving anti-fouling property.Histological analysis and in vitro cytotoxicity assays testified the excellent biocompatibility of the hydrogel. This high strength supramolecular polymer hydrogel with integrated multiple functions holds promising potentials as a scaffold biomaterial for treating degenerated soft supporting tissues.
文摘A treat-to-target(T2T)approach applies the principles of early intervention and tight disease control to optimise long-term outcomes in Crohn's disease.The Selecting Therapeutic Targets in Inflammatory Bowel Disease(STRIDE)-II guidelines specify short,intermediate,and long-term treatment goals,documenting specific treatment targets to be achieved at each of these timepoints.Scheduled appraisal of Crohn’s disease activity against pre-defined treatment targets at these timepoints remains central to determining whether current therapy should be continued or modified.Consensus treatment targets in Crohn’s disease comprise combination clinical and patient-reported outcome remission,in conjunction with biomarker normalisation and endoscopic healing.Although the STRIDE-II guidelines endorse the pursuit of endoscopic healing,clinicians must consider that this may not always be appropriate,acceptable,or achievable in all patients.This underscores the need to engage patients at the outset in an effort to personalise care and individualise treatment targets.The use of non-invasive biomarkers such as faecal calprotectin in conjunction with cross-sectional imaging techniques,particularly intestinal ultrasound,holds great promise;as do emerging treatment targets such as transmural healing.Two randomised clinical trials,namely,CALM and STARDUST,have evaluated the efficacy of a T2T approach in achieving endoscopic endpoints in patients with Crohn’s disease.Findings from these studies reflect that patient subgroups and Crohn’s disease characteristics likely to benefit most from a T2T approach,remain to be clarified.Moreover,outside of clinical trials,data pertaining to the real-world effectiveness of a T2T approach remains scare,highlighting the need for pragmatic real-world studies.Despite the obvious promise of a T2T approach,a lack of guidance to support its integration into real-world clinical practice has the potential to limit its uptake.This highlights the need to describe strategies,processes,and models of care ca
基金the Canadian Institutes of Health Research(CIHR)Foundation Grant FDN-167274Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery Grant(RGPIN 326982-10)Stem Cell Network Impact Award 920530 and National Institutes of Health Grant 2R01 HL076485.
文摘The substantial economic impact of non-healing wounds,scarring,and burns stemming from skin injuries is evident,resulting in a financial burden on both patients and the healthcare system.This review paper provides an overview of the skin’s vital role in guarding against various environmental challenges as the body’s largest protective organ and associated developments in biomaterials for wound healing.We first introduce the composition of skin tissue and the intricate processes of wound healing,with special attention to the crucial role of immunomodulation in both acute and chronic wounds.This highlights how the imbalance in the immune response,particularly in chronic wounds associated with underlying health conditions such as diabetes and immunosuppression,hinders normal healing stages.Then,this review distinguishes between traditional wound-healing strategies that create an optimal microenvironment and recent peptide-based biomaterials that modulate cellular processes and immune responses to facilitate wound closure.Additionally,we highlight the importance of considering the stages of wounds in the healing process.By integrating advanced materials engineering with an in-depth understanding of wound biology,this approach holds promise for reshaping the field of wound management and ultimately offering improved outcomes for patients with acute and chronic wounds.