A novel bis(guanidiniums) receptor for the catalytic cleavage of phosphosdiester was prepared and self-assembly architecture through hydrogen bonds and electrostatic interactions among the bis(guanidiniums) receptor, ...A novel bis(guanidiniums) receptor for the catalytic cleavage of phosphosdiester was prepared and self-assembly architecture through hydrogen bonds and electrostatic interactions among the bis(guanidiniums) receptor, the sulfate anion and water molecule was revealed by X-ray crystallographic analysis.展开更多
A facile and efficient 1, 4-conjungate addition(Michael addition) reaction of active methylene compounds to aft-unsaturated compounds, catalyzed by guanidinium lactate ionic liquid(IL9), has been developed. A rang...A facile and efficient 1, 4-conjungate addition(Michael addition) reaction of active methylene compounds to aft-unsaturated compounds, catalyzed by guanidinium lactate ionic liquid(IL9), has been developed. A range of chalcones and nitroalkenes together with active methylene compounds have been converted smoothly to the corresponding products in high yields.展开更多
A new guanidinium-based ionic liquid (IL) was investigated as a novel electrolyte for a lithium rechargeable battery. The viscosity, conductivity, lithium redox behavior, and charge-discharge characteristics of the li...A new guanidinium-based ionic liquid (IL) was investigated as a novel electrolyte for a lithium rechargeable battery. The viscosity, conductivity, lithium redox behavior, and charge-discharge characteristics of the lithium rechargeable batteries were investigated for the IL electrolyte with 0.3 mol kg 1 lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. Li/ LiFePO 4 cells incorporating the IL electrolyte without additives showed good cycle properties at a charge-discharge current rate of 0.1 C, and exhibited good rate capabilities in the presence of a mass fraction of 10% vinylene carbonate or gamma-butyrolactone.展开更多
The design of artificial nucleases and nuclease mimics has attracted extensive attention and made great progress due to their significant scientific meanings and potential application in the field of gene medicine and...The design of artificial nucleases and nuclease mimics has attracted extensive attention and made great progress due to their significant scientific meanings and potential application in the field of gene medicine and molecular biology. This paper reviews recent progress in the investigation of artificial nuclease,including "bifunctional cooperative catalysis","dinuclear synergistic catalysis","metal-free catalysis" ,and especially,the studies of aza-crown ethers as artificial nucleases and their interaction with DNA.展开更多
Summary: Human sperm DNA is an important genetic and epigenetic material, whose chromatin structure differs from that of somatic cells. As such, conventional methods for DNA extraction of somatic cells may not be sui...Summary: Human sperm DNA is an important genetic and epigenetic material, whose chromatin structure differs from that of somatic cells. As such, conventional methods for DNA extraction of somatic cells may not be suitable for obtaining sperm DNA. In this study, we evaluated and compared three sperm DNA extraction techniques, namely, modified guanidinium thiocyanate method (method A), traditional phenol-chloroform method (method B), and TianGen kit method (method C). Spectrophotometry and agarose gel electrophoresis analyses showed that method A produced DNA with higher quantity and purity than those of methods B and C (P〈0.01). PCR results revealed that method A was more reliable in amplifying DEAD-box polypeptide 4 (DDX4) and copy number variations (CNVs) than methods B and C, which generated false-positive errors. The results of sperm DNA methylation assay further indicated that methods A and B were effective, and the former yielded higher quantitative accuracy. In conclusion, the modified guanidinium thiocyanate method provided high quality and reli- able results and could be an optimal technique for extracting sperm DNA for methylation assay.展开更多
The influence of three kinds of guanidinium salt on the removal rate selectivity of different materials was studied during the barrier chemical mechanical polishing (CMP) process at first. The three kinds of guanidi...The influence of three kinds of guanidinium salt on the removal rate selectivity of different materials was studied during the barrier chemical mechanical polishing (CMP) process at first. The three kinds of guanidine saltguanidine hydrochloride, guanidine nitrate and guanidine carbonate. Then we compared the effect of the three kinds of guanidine salt on the dishing, erosion and surface roughness value. In the end, the reaction mechanism was studied through electrochemical analysis. All the results indicate that there is a better performance of the slurry with guanidine hydrochloride than the slurries with the other two kinds of guanidine salt. It effectively improved the removal rate selectivity and the surface roughness under the premise of low abrasive concentration and low polishing pressure, which is good for the optimization of the alkaline slurry for the barrier CMP process.展开更多
A catalyst-free, facile and efficient Michael addition reaction of active methylene compounds as well as nitromethane with chalcones catalyzed by guanidinium lactate ionic liquid was done. A series of chalcones, nitro...A catalyst-free, facile and efficient Michael addition reaction of active methylene compounds as well as nitromethane with chalcones catalyzed by guanidinium lactate ionic liquid was done. A series of chalcones, nitromethane, and active methylene compounds were converted smoothly to the corresponding products in high yields. The simple procedure, very mild conditions, high yields, and reuse of the IL without any loss of catalytic activity make this protocol considerably attractive for academic researches and practical applications.展开更多
A mixture of guanidinium nitrate and silica sulfuric acid acts as mild and heterogeneous media for the efficient mono nitration of phenolic compounds in dichloromethane at room temperature.
Control of self-assembly is significant to the preparation of supramolecular materials, but the control of hydration, responsiveness, dimension, catalysis of macrocyclic amphiphiles in an atom-economic manner is still...Control of self-assembly is significant to the preparation of supramolecular materials, but the control of hydration, responsiveness, dimension, catalysis of macrocyclic amphiphiles in an atom-economic manner is still a great challenge. The herein presented 527 Da low-molecular-weight macrocyclic amphiphile was fabricated by utilizing the selenium-containing crown ether as a hydrophobic motif together with guanidinium group as the hydrophilic moiety. The resulting benzo[21]crown-7 based macrocyclic amphiphile readily forms a redox-responsive solid nanoparticles in water, which can further interconnect into wrinkled pattern on-surface, as well as exhibits as a nanozyme for catalyzing disulfid bond formation. The present work highlights the great potential of guanidinium-and selenium-containing crown ethers for the control of functional assemblies.展开更多
Elasticity,as an emerging phenomenon of crystals,endows the newfangled properties on crystals owing to the altered local crystallinity in the deformed state,and hence attracts increasing research endeavors.However,onl...Elasticity,as an emerging phenomenon of crystals,endows the newfangled properties on crystals owing to the altered local crystallinity in the deformed state,and hence attracts increasing research endeavors.However,only a few molecular crystals and a limited number of one-dimensional coordination polymer crystals have exhibited such fantastic elastic response under mechanical stress.Herein,we report the first example of elastic hydrogen-bonded ionic framework(HIF)of{(CN_(3)H_(6))_(2)[Ti(μ_(2)-O)(SO_(4))_(2)]}n,assembled from one-dimensional negatively charged inorganic[Ti(μ_(2)-O)(SO_(4))_(2)]n 2n-chains and positively charged organic guanidinium cations via hydrogen bonds and electrostatic interactions.The slender prismatic single crystal exhibits remarkable elasticity with an optimal elastic bending strain(ε)of 2.5%.Impressively,the crystals give rise to two-dimensional elasticity owing to the equivalent crystallographic planes of the exposed faces and an unusual elastic response at liquid nitrogen temperature.The in-depth crystallographic analyses reveal hydrogen bonds and electrostatic interactions between anion chains and cations function like adhesive glue and account for such specific elastic properties,owing to the flexible and dynamic attributes of hydrogen bonds as they can work in a range of distance and orientation.And the channel in HIF provides space for bending with reduced strain.Incorporating these factors into low-dimensional crystals could be a general guidance for designing elastic crystals.Elasticity ganged with other intrinsic properties of HIF materials could inspire their newfangled applications in the near future.展开更多
The changes in activity and unfolding of calf intestinal alkaline phosphatase (CIP) during denaturation in guanidinium chloride solutions of different concentrations were investigated using ultraviolet difference abso...The changes in activity and unfolding of calf intestinal alkaline phosphatase (CIP) during denaturation in guanidinium chloride solutions of different concentrations were investigated using ultraviolet difference absorption spectra and fluorescence emission spectra. Unfolding and inactivation rate constants were measured and compared. The inactivation course is much faster than that of unfolding, which suggests that the active site of CIP containing two zinc ions and one magnesium ion is situated in a limited and flexible region of the enzyme molecule, which is more fragile to the denaturant than the protein as a whole.展开更多
A microwave-accelerated Suzuki coupling procedure was developed via guanidinium ionic liquids(GILs) stabilized Pd-micelle.The Pd micelle/GILs play a key role in enhancing the activity,due to the highly dispersed Pd ...A microwave-accelerated Suzuki coupling procedure was developed via guanidinium ionic liquids(GILs) stabilized Pd-micelle.The Pd micelle/GILs play a key role in enhancing the activity,due to the highly dispersed Pd active sites and the phase transfer function of GILs,which ensures the adsorption of reactants and facilitates the translation of the intermediates to the surface of the micelle.展开更多
The nucleophilic displacement reaction of n-bromooctane and potassium iodide in ionic liquid based on cyclic guanidinium cation(2) was investigated. The kinetic reasult shows that the rate of the reaction is enhanced ...The nucleophilic displacement reaction of n-bromooctane and potassium iodide in ionic liquid based on cyclic guanidinium cation(2) was investigated. The kinetic reasult shows that the rate of the reaction is enhanced in ionic liquid (2). The same reaction in [bmim][PF6](1)(where bmim=1-butyl-3-methylimidazolium) was also studied. It was found that as a reaction medium ionic liquid (2) is better than (1) for nucelophilic displacement reactions.展开更多
A guanidinium ionic liquid,N,N,N',N'-tetrahexyl-N",N"-dimethylguanidinium bis(trifluoromethane)sulfonylimide(THDMGNTf2), was synthesized and used as stationary phase for capillary gas chromatography.In compari...A guanidinium ionic liquid,N,N,N',N'-tetrahexyl-N",N"-dimethylguanidinium bis(trifluoromethane)sulfonylimide(THDMGNTf2), was synthesized and used as stationary phase for capillary gas chromatography.In comparison with imidazolium ionic liquid stationary phase,the present new stationary phase exhibits quite different selectivity and behaves more like a low polar stationary phase.The guanidinium ionic liquid of THDMG-NTf2 exhibited better separation of Grab test mixture than imidazolium ionic liquid of 1-octyl-3-butylimidazolium bis(trifluoromethane)sulfonylimide(OBIM-NTf2).Solvation parameter model was also used to evaluate the selectivity of THDMG-NTf2.Additionally,essential oil of Magnolia biondii Pamp was analyzed to further evaluate the selectivity of THDMG-NTf2 for a sample of complicated components.Satisfactory separation of the essential oil was achieved on a THDMG-NTf2 column(10 m) while using a commercial column(30 m) as reference.The present study shows that the guanidinium ionic liquid possesses novel chromatographic selectivity and has great potential for wide applications.展开更多
In the present work,a novel amino-functionalized hexaalkylguanidinium chloride ionic liquid was prepared and grafted on the surface of magnetic materials through polyethyleneimine to enrich polycyclic aromatic hydroca...In the present work,a novel amino-functionalized hexaalkylguanidinium chloride ionic liquid was prepared and grafted on the surface of magnetic materials through polyethyleneimine to enrich polycyclic aromatic hydrocarbons in water in combination with HPLC equipped with an ultraviolet detector.The effect of several parameters on the extraction efficiency was investigated,including the desorption solvent,the amounts of sorbents,the extraction time,the desorption time and the salt amount.Under the optimized conditions,the method validation exhibited good linearity with correlation coefficients above 0.994 in the range of 0.2-300 ng/mL and low limits of detection and quantification of 0.05 and 0.2 ng/mL,respectively.Besides,relative recoveries were in the range of 80-120%,and the intra-day and inter-day repeatability were good with the relative standard deviations of less than 20%.Finally,the guanidinium ionic liquid modified magnetic materials were applied for the extraction of polycyclic aromatic hydrocarbons from real water samples to demonstrate the utility,and the results show that the proposed method has good prospect for effective enrichment and determination of pollutants in water.展开更多
The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material.In particular,nanocrystals(NCs)of inorganic perovskites have demonstrated excellen...The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material.In particular,nanocrystals(NCs)of inorganic perovskites have demonstrated excellent performance for light-emitting and display applications.However,the presence of surface defects on the NCs negatively impacts their performance in devices.Herein,we report a compatible facial post-treatment of CsPbI_(3) nanocrystals using guanidinium iodide(GuI).It is found that the GuI treatment effectively passivated the halide vacancy defects on the surface of the NCs while offering effective surface protection and exciton confinement thanks to the beneficial contribution of iodide and guanidinium cation.As a consequence,the film of treated CsPbI_(3) nanocrystals exhibited significantly enhanced luminescence and charge transport properties,leading to high-performance light-emitting diode with maximum external quantum efficiency of 13.8%with high brightness(peak luminance of 7039 cd m^(−2) and a peak current density of 10.8 cd A^(−1)).The EQE is over threefold higher than performance of untreated device(EQE:3.8%).The operational half-lifetime of the treated devices also was significantly improved with T50 of 20 min(at current density of 25 mA cm^(−2)),outperforming the untreated devices(T50~6 min).展开更多
A series of guanidinium ionic liquids(GILs) was designed, synthesized, and used as electrolytes for dye-sensitized solar cells(DSSCs). The effect of electrolytes containing GILs on the photovoltaic performance of ...A series of guanidinium ionic liquids(GILs) was designed, synthesized, and used as electrolytes for dye-sensitized solar cells(DSSCs). The effect of electrolytes containing GILs on the photovoltaic performance of DSSCs was investigated. It is demonstrated that these GILs are promising for being used as electrolytes for DSSCs and a conversion efficiency of 4.1% can be obtained under AM 1.5 sun light irradiation.展开更多
Lewis acidic guanidinium ionic liquid(LAGIL) 2c was used as a novel, efficient and recyclable catalyst for aminolysis of epoxides under solvent-free and room temperature conditions, giving the corresponding β-amino...Lewis acidic guanidinium ionic liquid(LAGIL) 2c was used as a novel, efficient and recyclable catalyst for aminolysis of epoxides under solvent-free and room temperature conditions, giving the corresponding β-amino alcohols with moderate to excellent regioselectivity(up to 91:9) in high yields(up to 97%). In addition, LAGIL 2c was recycled three times without any loss of catalytic activity and selectivity to the product.展开更多
基金Project supported by the National Science Foundation of China (No. 29872014)
文摘A novel bis(guanidiniums) receptor for the catalytic cleavage of phosphosdiester was prepared and self-assembly architecture through hydrogen bonds and electrostatic interactions among the bis(guanidiniums) receptor, the sulfate anion and water molecule was revealed by X-ray crystallographic analysis.
基金Supported by the Jilin University Innovation Fund(No.419070200033).
文摘A facile and efficient 1, 4-conjungate addition(Michael addition) reaction of active methylene compounds to aft-unsaturated compounds, catalyzed by guanidinium lactate ionic liquid(IL9), has been developed. A range of chalcones and nitroalkenes together with active methylene compounds have been converted smoothly to the corresponding products in high yields.
文摘A new guanidinium-based ionic liquid (IL) was investigated as a novel electrolyte for a lithium rechargeable battery. The viscosity, conductivity, lithium redox behavior, and charge-discharge characteristics of the lithium rechargeable batteries were investigated for the IL electrolyte with 0.3 mol kg 1 lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. Li/ LiFePO 4 cells incorporating the IL electrolyte without additives showed good cycle properties at a charge-discharge current rate of 0.1 C, and exhibited good rate capabilities in the presence of a mass fraction of 10% vinylene carbonate or gamma-butyrolactone.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20872061 & 20372032)the National Basic Research of China (Grant No. 2007CB925103)
文摘The design of artificial nucleases and nuclease mimics has attracted extensive attention and made great progress due to their significant scientific meanings and potential application in the field of gene medicine and molecular biology. This paper reviews recent progress in the investigation of artificial nuclease,including "bifunctional cooperative catalysis","dinuclear synergistic catalysis","metal-free catalysis" ,and especially,the studies of aza-crown ethers as artificial nucleases and their interaction with DNA.
基金supported by the National Natural Science Foundation of China(No.81370755)
文摘Summary: Human sperm DNA is an important genetic and epigenetic material, whose chromatin structure differs from that of somatic cells. As such, conventional methods for DNA extraction of somatic cells may not be suitable for obtaining sperm DNA. In this study, we evaluated and compared three sperm DNA extraction techniques, namely, modified guanidinium thiocyanate method (method A), traditional phenol-chloroform method (method B), and TianGen kit method (method C). Spectrophotometry and agarose gel electrophoresis analyses showed that method A produced DNA with higher quantity and purity than those of methods B and C (P〈0.01). PCR results revealed that method A was more reliable in amplifying DEAD-box polypeptide 4 (DDX4) and copy number variations (CNVs) than methods B and C, which generated false-positive errors. The results of sperm DNA methylation assay further indicated that methods A and B were effective, and the former yielded higher quantitative accuracy. In conclusion, the modified guanidinium thiocyanate method provided high quality and reli- able results and could be an optimal technique for extracting sperm DNA for methylation assay.
基金supported by the Special Project Items NO.2 in National Long-Term Technology Development Plan,China(No.2009ZX02308)the Hebei Natural Science Foundation of China(E2013202247)
文摘The influence of three kinds of guanidinium salt on the removal rate selectivity of different materials was studied during the barrier chemical mechanical polishing (CMP) process at first. The three kinds of guanidine saltguanidine hydrochloride, guanidine nitrate and guanidine carbonate. Then we compared the effect of the three kinds of guanidine salt on the dishing, erosion and surface roughness value. In the end, the reaction mechanism was studied through electrochemical analysis. All the results indicate that there is a better performance of the slurry with guanidine hydrochloride than the slurries with the other two kinds of guanidine salt. It effectively improved the removal rate selectivity and the surface roughness under the premise of low abrasive concentration and low polishing pressure, which is good for the optimization of the alkaline slurry for the barrier CMP process.
文摘A catalyst-free, facile and efficient Michael addition reaction of active methylene compounds as well as nitromethane with chalcones catalyzed by guanidinium lactate ionic liquid was done. A series of chalcones, nitromethane, and active methylene compounds were converted smoothly to the corresponding products in high yields. The simple procedure, very mild conditions, high yields, and reuse of the IL without any loss of catalytic activity make this protocol considerably attractive for academic researches and practical applications.
基金supported by the research affairs of Ilam University,Ilam,Iran
文摘A mixture of guanidinium nitrate and silica sulfuric acid acts as mild and heterogeneous media for the efficient mono nitration of phenolic compounds in dichloromethane at room temperature.
基金financial support from the National Natural Science Foundation of China (Nos. 21901210,22071196, 22007078)Key R&D Program of Shaanxi Province (No.2021KWZ-18)+4 种基金Aeronautical Science Foundation of China (No. ASFC-2020Z061053001)Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University)(No. klpme2021-05-03)Student Innovation and Entrepreneurship Education Center of the Student Work Department of the Party Committee of NPU(No. 2021-cxcy-012)Fundamental Research Funds for the Central Universitiesand Fellowship from CSC Innovative Team Program(No. CXXM20190099)。
文摘Control of self-assembly is significant to the preparation of supramolecular materials, but the control of hydration, responsiveness, dimension, catalysis of macrocyclic amphiphiles in an atom-economic manner is still a great challenge. The herein presented 527 Da low-molecular-weight macrocyclic amphiphile was fabricated by utilizing the selenium-containing crown ether as a hydrophobic motif together with guanidinium group as the hydrophilic moiety. The resulting benzo[21]crown-7 based macrocyclic amphiphile readily forms a redox-responsive solid nanoparticles in water, which can further interconnect into wrinkled pattern on-surface, as well as exhibits as a nanozyme for catalyzing disulfid bond formation. The present work highlights the great potential of guanidinium-and selenium-containing crown ethers for the control of functional assemblies.
基金We acknowledge support from the Chinese Academy of Sciences and University of Science and Technology of China,the National Key Research and Development Program of China(No.2021YFA1500402)the National Natural Science Foundation of China(Nos.21571167,51502282,and 22075266)the Fundamental Research Funds for the Central Universities(Nos.WK2060190053 and WK2060190100).
文摘Elasticity,as an emerging phenomenon of crystals,endows the newfangled properties on crystals owing to the altered local crystallinity in the deformed state,and hence attracts increasing research endeavors.However,only a few molecular crystals and a limited number of one-dimensional coordination polymer crystals have exhibited such fantastic elastic response under mechanical stress.Herein,we report the first example of elastic hydrogen-bonded ionic framework(HIF)of{(CN_(3)H_(6))_(2)[Ti(μ_(2)-O)(SO_(4))_(2)]}n,assembled from one-dimensional negatively charged inorganic[Ti(μ_(2)-O)(SO_(4))_(2)]n 2n-chains and positively charged organic guanidinium cations via hydrogen bonds and electrostatic interactions.The slender prismatic single crystal exhibits remarkable elasticity with an optimal elastic bending strain(ε)of 2.5%.Impressively,the crystals give rise to two-dimensional elasticity owing to the equivalent crystallographic planes of the exposed faces and an unusual elastic response at liquid nitrogen temperature.The in-depth crystallographic analyses reveal hydrogen bonds and electrostatic interactions between anion chains and cations function like adhesive glue and account for such specific elastic properties,owing to the flexible and dynamic attributes of hydrogen bonds as they can work in a range of distance and orientation.And the channel in HIF provides space for bending with reduced strain.Incorporating these factors into low-dimensional crystals could be a general guidance for designing elastic crystals.Elasticity ganged with other intrinsic properties of HIF materials could inspire their newfangled applications in the near future.
文摘The changes in activity and unfolding of calf intestinal alkaline phosphatase (CIP) during denaturation in guanidinium chloride solutions of different concentrations were investigated using ultraviolet difference absorption spectra and fluorescence emission spectra. Unfolding and inactivation rate constants were measured and compared. The inactivation course is much faster than that of unfolding, which suggests that the active site of CIP containing two zinc ions and one magnesium ion is situated in a limited and flexible region of the enzyme molecule, which is more fragile to the denaturant than the protein as a whole.
基金Supported by the National Natural Science Foundation of China(Nos.20802071,21074133)
文摘A microwave-accelerated Suzuki coupling procedure was developed via guanidinium ionic liquids(GILs) stabilized Pd-micelle.The Pd micelle/GILs play a key role in enhancing the activity,due to the highly dispersed Pd active sites and the phase transfer function of GILs,which ensures the adsorption of reactants and facilitates the translation of the intermediates to the surface of the micelle.
文摘The nucleophilic displacement reaction of n-bromooctane and potassium iodide in ionic liquid based on cyclic guanidinium cation(2) was investigated. The kinetic reasult shows that the rate of the reaction is enhanced in ionic liquid (2). The same reaction in [bmim][PF6](1)(where bmim=1-butyl-3-methylimidazolium) was also studied. It was found that as a reaction medium ionic liquid (2) is better than (1) for nucelophilic displacement reactions.
基金the National Nature Science Foundation of China(No.20675007)
文摘A guanidinium ionic liquid,N,N,N',N'-tetrahexyl-N",N"-dimethylguanidinium bis(trifluoromethane)sulfonylimide(THDMGNTf2), was synthesized and used as stationary phase for capillary gas chromatography.In comparison with imidazolium ionic liquid stationary phase,the present new stationary phase exhibits quite different selectivity and behaves more like a low polar stationary phase.The guanidinium ionic liquid of THDMG-NTf2 exhibited better separation of Grab test mixture than imidazolium ionic liquid of 1-octyl-3-butylimidazolium bis(trifluoromethane)sulfonylimide(OBIM-NTf2).Solvation parameter model was also used to evaluate the selectivity of THDMG-NTf2.Additionally,essential oil of Magnolia biondii Pamp was analyzed to further evaluate the selectivity of THDMG-NTf2 for a sample of complicated components.Satisfactory separation of the essential oil was achieved on a THDMG-NTf2 column(10 m) while using a commercial column(30 m) as reference.The present study shows that the guanidinium ionic liquid possesses novel chromatographic selectivity and has great potential for wide applications.
基金The work was financially supported by the Fundamental Research Funds for the Central Universities(DUT18RC(4)058).
文摘In the present work,a novel amino-functionalized hexaalkylguanidinium chloride ionic liquid was prepared and grafted on the surface of magnetic materials through polyethyleneimine to enrich polycyclic aromatic hydrocarbons in water in combination with HPLC equipped with an ultraviolet detector.The effect of several parameters on the extraction efficiency was investigated,including the desorption solvent,the amounts of sorbents,the extraction time,the desorption time and the salt amount.Under the optimized conditions,the method validation exhibited good linearity with correlation coefficients above 0.994 in the range of 0.2-300 ng/mL and low limits of detection and quantification of 0.05 and 0.2 ng/mL,respectively.Besides,relative recoveries were in the range of 80-120%,and the intra-day and inter-day repeatability were good with the relative standard deviations of less than 20%.Finally,the guanidinium ionic liquid modified magnetic materials were applied for the extraction of polycyclic aromatic hydrocarbons from real water samples to demonstrate the utility,and the results show that the proposed method has good prospect for effective enrichment and determination of pollutants in water.
基金supported by Australian Research Council Discovery Project(DP190102252).
文摘The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material.In particular,nanocrystals(NCs)of inorganic perovskites have demonstrated excellent performance for light-emitting and display applications.However,the presence of surface defects on the NCs negatively impacts their performance in devices.Herein,we report a compatible facial post-treatment of CsPbI_(3) nanocrystals using guanidinium iodide(GuI).It is found that the GuI treatment effectively passivated the halide vacancy defects on the surface of the NCs while offering effective surface protection and exciton confinement thanks to the beneficial contribution of iodide and guanidinium cation.As a consequence,the film of treated CsPbI_(3) nanocrystals exhibited significantly enhanced luminescence and charge transport properties,leading to high-performance light-emitting diode with maximum external quantum efficiency of 13.8%with high brightness(peak luminance of 7039 cd m^(−2) and a peak current density of 10.8 cd A^(−1)).The EQE is over threefold higher than performance of untreated device(EQE:3.8%).The operational half-lifetime of the treated devices also was significantly improved with T50 of 20 min(at current density of 25 mA cm^(−2)),outperforming the untreated devices(T50~6 min).
文摘A series of guanidinium ionic liquids(GILs) was designed, synthesized, and used as electrolytes for dye-sensitized solar cells(DSSCs). The effect of electrolytes containing GILs on the photovoltaic performance of DSSCs was investigated. It is demonstrated that these GILs are promising for being used as electrolytes for DSSCs and a conversion efficiency of 4.1% can be obtained under AM 1.5 sun light irradiation.
文摘Lewis acidic guanidinium ionic liquid(LAGIL) 2c was used as a novel, efficient and recyclable catalyst for aminolysis of epoxides under solvent-free and room temperature conditions, giving the corresponding β-amino alcohols with moderate to excellent regioselectivity(up to 91:9) in high yields(up to 97%). In addition, LAGIL 2c was recycled three times without any loss of catalytic activity and selectivity to the product.