The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of ...The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique and the Pfaffian properties, Wronskian and Grammian solutions have been generated.展开更多
The (2+1)-dimensional BKP equation in the Hirota bilinear form is studied during this work. Wronskian and Grammian techniques are applied to the construction of Wronskian and Grammian solutions of this equation, re...The (2+1)-dimensional BKP equation in the Hirota bilinear form is studied during this work. Wronskian and Grammian techniques are applied to the construction of Wronskian and Grammian solutions of this equation, respectively. It is shown that these solutions can be expressed as not only Pfaffians but also Wronskians and Grammians.展开更多
New type of variable-coefficient KP equation with self-consistent sources and its Grammian solutions are obtained by using the source generation procedure.
Based on the Grammian and Pfaffian derivative formulae, Grammian and Pfaffian solutions are obtained for a (3+1)-dimensional generalized shallow water equation in the Hirota bilinear form. Moreover, a Pfaffian exte...Based on the Grammian and Pfaffian derivative formulae, Grammian and Pfaffian solutions are obtained for a (3+1)-dimensional generalized shallow water equation in the Hirota bilinear form. Moreover, a Pfaffian extension is made for the equation by means of the Pfaffianization procedure, the Wronski-type and Gramm-type Pfaffian solutions of the resulting coupled system are presented.展开更多
文摘The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique and the Pfaffian properties, Wronskian and Grammian solutions have been generated.
基金supported by the National Natural Science Foundation of China(11202161 and 11172233)the Basic Research Fund of the Northwestern Polytechnical University(GBKY1034)
文摘The (2+1)-dimensional BKP equation in the Hirota bilinear form is studied during this work. Wronskian and Grammian techniques are applied to the construction of Wronskian and Grammian solutions of this equation, respectively. It is shown that these solutions can be expressed as not only Pfaffians but also Wronskians and Grammians.
基金Supported by the NSF of Henan Province(112300410109)Supported by the NSF of the Education Department(2010A110022)
文摘New type of variable-coefficient KP equation with self-consistent sources and its Grammian solutions are obtained by using the source generation procedure.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10932009 and 11172233)the Northwestern Polytechnical University Foundation for Fundamental Research, China (Grant No. GBKY1034)the State Administration of Foreign Experts Affairs of China, and the Chunhui Plan of the Ministry of Education of China
文摘Based on the Grammian and Pfaffian derivative formulae, Grammian and Pfaffian solutions are obtained for a (3+1)-dimensional generalized shallow water equation in the Hirota bilinear form. Moreover, a Pfaffian extension is made for the equation by means of the Pfaffianization procedure, the Wronski-type and Gramm-type Pfaffian solutions of the resulting coupled system are presented.