摘要
基于Hirota直接方法,将变系数(n+1)-维KP方程化成Hirota双线性形式,再借助Wronskian技巧和Pfaffian性质,对该方程进行求解,得到了其广义的Wronskian解和Grammian解.
The paper explored the process of the generalized Wronskian and Grammian solutions. The steps mainly include: to change the variable-coefficient (n + 1)-dimensional KP equation to bilinear form based on Hirota method, and then to solve the equation with the help of Wronskin technique and Pfaffian properties.
出处
《温州大学学报(自然科学版)》
2013年第1期13-17,共5页
Journal of Wenzhou University(Natural Science Edition)