A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated ...A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development,increased nutrient accumulation, and increased yield. Compared with conventional soil management(CK), root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm(T1) and subsoil tillage to 50 cm(T2) were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.展开更多
Study of the surface morphology of gas hydrate is of great importance in understanding its physical properties and occurrence.In order to investigate the surface morphology of different types(sI and sII)and occurrence...Study of the surface morphology of gas hydrate is of great importance in understanding its physical properties and occurrence.In order to investigate the surface morphology of different types(sI and sII)and occurrences(pore-filling and fracture-filling)of gas hydrate,both lab-synthesized and drilled-gas hydrate samples were measured using cryo-scanning electron microscopy(cryo-SEM).Results showed that the surface of s I hydrate was relatively smooth,and spongy nano-pores(200–400 nm)gradually occurred at the surface during continuous observation.The surface of sII hydrate was more compact,showing a tier-like structure.Hydrate occurred in quartz sand and usually filled the pores of the sediments and both hydrate and sediments were cemented with each other.SEM observation of the gas hydrates collected from the South China Sea showed that the surface morphology and contact relation with sediments varied with hydrate occurrence.For instance,hydrates dispersed in sediments mainly filled the pores of the sediments.The existence of microorganism shells,such as foraminifera,was beneficial to the formation of gas hydrate.When hydrate occurred as a massive or vein structure,it was easily distinguished from the surrounding sediments.The surface of hydrate with massive or vein structure showed two distinct characters:one was dense and smooth,the other is porous(several to tens of micrometers in diameter).The occurrence of different hydrate morphologies was probably caused by the supplement rates of methane gas.展开更多
本试验于2019-2020年以汾酒粱1号为材料,在0、75、150、225、300和450 kg N hm^(-2)6个施氮水平下,于花后每隔7 d采集不同穗位籽粒分析其灌浆特性及淀粉形成过程,探究不同氮素用量对高粱籽粒灌浆及单粒淀粉累积的影响。结果表明,与不施...本试验于2019-2020年以汾酒粱1号为材料,在0、75、150、225、300和450 kg N hm^(-2)6个施氮水平下,于花后每隔7 d采集不同穗位籽粒分析其灌浆特性及淀粉形成过程,探究不同氮素用量对高粱籽粒灌浆及单粒淀粉累积的影响。结果表明,与不施氮相比施氮75 kg hm^(-2)显著提高了穗粒数和产量,但随施氮量的增加产量没有显著变化;氮素对优势粒(始花日开始2 d内开花的籽粒)和劣势粒(始花日开始5~6 d间开花的籽粒)的单粒重及单粒体积、灌浆特性和单粒淀粉累积的影响趋势基本一致,施氮条件下单粒重、单粒体积和灌浆速率随施氮量增加而增加,但不施氮处理的单粒重和单粒体积仍高于各施氮处理,且缺氮显著延长了灌浆活跃期。籽粒淀粉累积速率与参与籽粒淀粉合成的关键酶ADP-葡萄糖焦磷酸化酶(AGPase)和可溶性淀粉合酶(SSS)活性显著相关;过量施氮(450 kg N hm^(-2))灌浆前期籽粒中AGPase和SSS的活性最高,促进了灌浆前期籽粒淀粉累积;施氮75 kg hm^(-2)灌浆前期籽粒中AGPase和SSS的活性和淀粉累积速率次之;虽然缺氮降低了灌浆前期籽粒中AGPase和SSS的活性,但在灌浆后期维持较高活性而延长了灌浆活跃期,因而后期具有较高的单粒淀粉累积速率,提升了单粒淀粉累积量和单粒重。展开更多
基金supported by the National Key Technology R&D Program of China(2012BAD04B02,2013BAD07B02,and2011BAD16B10)the Special Fund for Agro-Scientific Research in the Public Interest(201103003 and 201303126-4)the Key Technology R&D Program of Jilin province,China(20126026)
文摘A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development,increased nutrient accumulation, and increased yield. Compared with conventional soil management(CK), root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm(T1) and subsoil tillage to 50 cm(T2) were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.
基金financially supported by the National Natural Science Foundation of China(No.41976205)the National Key R&D Program of China(No.2018YFC031 0000)the Open Funding of Qingdao National Laboratory for Marine Science and Technology(No.QNLM20 16ORP0203)
文摘Study of the surface morphology of gas hydrate is of great importance in understanding its physical properties and occurrence.In order to investigate the surface morphology of different types(sI and sII)and occurrences(pore-filling and fracture-filling)of gas hydrate,both lab-synthesized and drilled-gas hydrate samples were measured using cryo-scanning electron microscopy(cryo-SEM).Results showed that the surface of s I hydrate was relatively smooth,and spongy nano-pores(200–400 nm)gradually occurred at the surface during continuous observation.The surface of sII hydrate was more compact,showing a tier-like structure.Hydrate occurred in quartz sand and usually filled the pores of the sediments and both hydrate and sediments were cemented with each other.SEM observation of the gas hydrates collected from the South China Sea showed that the surface morphology and contact relation with sediments varied with hydrate occurrence.For instance,hydrates dispersed in sediments mainly filled the pores of the sediments.The existence of microorganism shells,such as foraminifera,was beneficial to the formation of gas hydrate.When hydrate occurred as a massive or vein structure,it was easily distinguished from the surrounding sediments.The surface of hydrate with massive or vein structure showed two distinct characters:one was dense and smooth,the other is porous(several to tens of micrometers in diameter).The occurrence of different hydrate morphologies was probably caused by the supplement rates of methane gas.
文摘本试验于2019-2020年以汾酒粱1号为材料,在0、75、150、225、300和450 kg N hm^(-2)6个施氮水平下,于花后每隔7 d采集不同穗位籽粒分析其灌浆特性及淀粉形成过程,探究不同氮素用量对高粱籽粒灌浆及单粒淀粉累积的影响。结果表明,与不施氮相比施氮75 kg hm^(-2)显著提高了穗粒数和产量,但随施氮量的增加产量没有显著变化;氮素对优势粒(始花日开始2 d内开花的籽粒)和劣势粒(始花日开始5~6 d间开花的籽粒)的单粒重及单粒体积、灌浆特性和单粒淀粉累积的影响趋势基本一致,施氮条件下单粒重、单粒体积和灌浆速率随施氮量增加而增加,但不施氮处理的单粒重和单粒体积仍高于各施氮处理,且缺氮显著延长了灌浆活跃期。籽粒淀粉累积速率与参与籽粒淀粉合成的关键酶ADP-葡萄糖焦磷酸化酶(AGPase)和可溶性淀粉合酶(SSS)活性显著相关;过量施氮(450 kg N hm^(-2))灌浆前期籽粒中AGPase和SSS的活性最高,促进了灌浆前期籽粒淀粉累积;施氮75 kg hm^(-2)灌浆前期籽粒中AGPase和SSS的活性和淀粉累积速率次之;虽然缺氮降低了灌浆前期籽粒中AGPase和SSS的活性,但在灌浆后期维持较高活性而延长了灌浆活跃期,因而后期具有较高的单粒淀粉累积速率,提升了单粒淀粉累积量和单粒重。