The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgentdemand for most industrialized countries. In pollution...The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgentdemand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extentdepending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of thewhole accident process, a novel and expandable identification method for risk sources causingwater pollution accidents is presented. The newlydeveloped approach, by analyzing and stimulating thewhole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses,were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China,was selected to test the potential of the identification method. The results showed that therewere four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plantwould lead to the most serious impact on the surroundingwater environment. This potential accidentwould severelydamage the ecosystem up to3.8 kmdownstream of Yangtze River, and lead to pollution over adistance stretching to 73.7 kmdownstream. The proposed method is easily extended to the nationwide identification of potential risk sources.展开更多
基金supported by the National High Technology Research and Development Program(863) of China(No.2007AA06A402,2008AA06A404)the National Major Program of Science and Technology for Water Pollution Control and Governance(No.2012ZX07202-005)
文摘The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgentdemand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extentdepending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of thewhole accident process, a novel and expandable identification method for risk sources causingwater pollution accidents is presented. The newlydeveloped approach, by analyzing and stimulating thewhole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses,were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China,was selected to test the potential of the identification method. The results showed that therewere four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plantwould lead to the most serious impact on the surroundingwater environment. This potential accidentwould severelydamage the ecosystem up to3.8 kmdownstream of Yangtze River, and lead to pollution over adistance stretching to 73.7 kmdownstream. The proposed method is easily extended to the nationwide identification of potential risk sources.