Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acce...Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acceptors have emerged as promising materials for achieving highly efficient and stable binary OSCs,while application as third component for ternary OSCs is limited.Here a novelπ-extended giant dimeric acceptor,GDF,is developed based on central Y series core fusion and rigid BDT as linker,and then incorporated into the state-of-the-art PM1:PC6 system to construct ternary OSCs.The GDF has a near planar backbone,resulting in increasedπ-conjugation,excellent crystallinity,and good electron transport capacity.When GDF is introduced into the PM1:PC6 system,it ensues in a cascade like the lowest unoccupied molecular orbitals(LUMO)energy level alignment,a complementary absorption band with PM1 and PC6,higher and balanced hole and electron mobility,slightly smaller domain size,and a higher exciton dissociation probability for PM1:PC6:GDF(1:1.1:0.1)blend film.As a consequence,the PM1:PC6:GDF(1:1.1:0.1)ternary OSC achieves a champion PCE of 19.22%,with a significantly higher open-circuit voltage and short-circuit current density,compared to 18.45%for the PM1:PC6(1:1.2)binary OSC.Our findings show that employing aπ-extended giant dimeric acceptor as a third component significantly improves the photovoltaic performance of ternary OSCs.展开更多
This paper proposes a multi-axis projection (MAP) based giant component formation strategy via the Maximal Independent Set (MIS) in a random unit-disk graph. We focus on the problem of virtual backbone constructio...This paper proposes a multi-axis projection (MAP) based giant component formation strategy via the Maximal Independent Set (MIS) in a random unit-disk graph. We focus on the problem of virtual backbone construction in wireless ad hoc and sensor networks, where the coverage areas of the nodes are disks with identical radii. In the simulation, we show that the MAP-based giant component has the ability to connect most nodes and serves as a backbone in the network. The algorithm is localized and may play an important role in efficiently constructing a virtual backbone for ad hoc and sensor networks.展开更多
文章以"合作演化"研究领域为例,通过检索Web of Science的文献数据构建3年动态时间窗下的合作网络,采用复杂网络分析与统计分析相结合的方法研究了网络小世界特征与科研绩效之间的关系。结果表明合作网络的最大连通子图是一...文章以"合作演化"研究领域为例,通过检索Web of Science的文献数据构建3年动态时间窗下的合作网络,采用复杂网络分析与统计分析相结合的方法研究了网络小世界特征与科研绩效之间的关系。结果表明合作网络的最大连通子图是一个多社区的小世界网络,这一结构特征与基于文章数量的科研绩效呈线性正相关关系;而利用被引次数衡量的文章质量随小世界特征的增强表现出类似钟形曲线的变化过程。展开更多
Most previous studies have mainly focused on the analyses of one entire network(graph) or the giant connected components of networks. In this paper, we investigate the disconnected components(non-giant connected compo...Most previous studies have mainly focused on the analyses of one entire network(graph) or the giant connected components of networks. In this paper, we investigate the disconnected components(non-giant connected component) of some real social networks, and report some interesting discoveries about structural properties of disconnected components. We study three diverse, real networks and compute the significance profile of each component. We discover some similarities in the local structure between the giant connected component and disconnected components in diverse social networks. Then we discuss how to detect network attacks based on the local structure properties of networks. Furthermore, we propose an empirical generative model called i Friends to generate networks that follow our observed patterns.展开更多
基金supported by the Yunnan Fundamental Research Project(202301BF070001-009,KC-22222357)the Sichuan Science and Technology Program(2023NSFSC0990)the School of Materials Science and Engineering,Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications。
文摘Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acceptors have emerged as promising materials for achieving highly efficient and stable binary OSCs,while application as third component for ternary OSCs is limited.Here a novelπ-extended giant dimeric acceptor,GDF,is developed based on central Y series core fusion and rigid BDT as linker,and then incorporated into the state-of-the-art PM1:PC6 system to construct ternary OSCs.The GDF has a near planar backbone,resulting in increasedπ-conjugation,excellent crystallinity,and good electron transport capacity.When GDF is introduced into the PM1:PC6 system,it ensues in a cascade like the lowest unoccupied molecular orbitals(LUMO)energy level alignment,a complementary absorption band with PM1 and PC6,higher and balanced hole and electron mobility,slightly smaller domain size,and a higher exciton dissociation probability for PM1:PC6:GDF(1:1.1:0.1)blend film.As a consequence,the PM1:PC6:GDF(1:1.1:0.1)ternary OSC achieves a champion PCE of 19.22%,with a significantly higher open-circuit voltage and short-circuit current density,compared to 18.45%for the PM1:PC6(1:1.2)binary OSC.Our findings show that employing aπ-extended giant dimeric acceptor as a third component significantly improves the photovoltaic performance of ternary OSCs.
基金Supported by the National Natural Science Foundation of China(No. 60903055)the China Postdoctoral Science Foundation Funded Project (No. 20080430776)the National Basic Research and Development (973) Program of China (No. 2011CB302905)
文摘This paper proposes a multi-axis projection (MAP) based giant component formation strategy via the Maximal Independent Set (MIS) in a random unit-disk graph. We focus on the problem of virtual backbone construction in wireless ad hoc and sensor networks, where the coverage areas of the nodes are disks with identical radii. In the simulation, we show that the MAP-based giant component has the ability to connect most nodes and serves as a backbone in the network. The algorithm is localized and may play an important role in efficiently constructing a virtual backbone for ad hoc and sensor networks.
文摘文章以"合作演化"研究领域为例,通过检索Web of Science的文献数据构建3年动态时间窗下的合作网络,采用复杂网络分析与统计分析相结合的方法研究了网络小世界特征与科研绩效之间的关系。结果表明合作网络的最大连通子图是一个多社区的小世界网络,这一结构特征与基于文章数量的科研绩效呈线性正相关关系;而利用被引次数衡量的文章质量随小世界特征的增强表现出类似钟形曲线的变化过程。
基金supported by the National Natural Science Foundation of China (Grant Nos. 61572060, 61190125, 61472024)CERNET Innovation Project 2015 (Grant No. NGII20151004)
文摘Most previous studies have mainly focused on the analyses of one entire network(graph) or the giant connected components of networks. In this paper, we investigate the disconnected components(non-giant connected component) of some real social networks, and report some interesting discoveries about structural properties of disconnected components. We study three diverse, real networks and compute the significance profile of each component. We discover some similarities in the local structure between the giant connected component and disconnected components in diverse social networks. Then we discuss how to detect network attacks based on the local structure properties of networks. Furthermore, we propose an empirical generative model called i Friends to generate networks that follow our observed patterns.